Skip to main content
Log in

Electrode kinetic phenomena of solid state ionic devices

  • Published:
Ionics Aims and scope Submit manuscript

Abstract

With the development of functional materials with high ionic and combined ionicelectronic conductivity, the engineering of interfaces became prerequisite. Technological applications demand combinations of materials with different electrical properties to form junctions. The occurring kinetic electrode phenomena play a significant role to the overall performance and may be rate determining. We show here the significance of the equilibration between platinum and the solid electrolyte with respect to the response time in potentiometric oxygen sensors. Fundamental aspects of voltage generation are discussed as well, and the response time is correlated to the equilibration along the contact zone between platinum and the electrolyte. A common problem of potentiometric devices for gas sensing applications is the cross sensitivity to species other than those under detection. The proposed kinetic method based on the theta concept is investigated for selective detection in the presence of a multiple number of complex gases by employing a single electrochemical cell. Information from current-voltage plots is converted to generate complex plane plot for the Fourier coefficients. The various polarizations under the applied electric perturbation are modelled and compared to experimental data for the determination of the rate determining processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Nernst, Z. Electrochem. 6, 41 (1900).

    Google Scholar 

  2. W. Weppner and R.A. Huggins, Ann. Rev. Mater. Sci.8, 269 (1978).

    Article  CAS  Google Scholar 

  3. T.H. Etsell, S.N. Flengas, Chem. Rev.70, 339 (1970).

    Article  CAS  Google Scholar 

  4. J.B. Goodenough, H.Y-P. Hong and J.A. Kafalas, Mat. Res. Bull.11, 203 (1976).

    Article  CAS  Google Scholar 

  5. J.N. Bradley, P.D. Greene, Trans. Faraday Soc.62, 2069 (1966).

    Article  CAS  Google Scholar 

  6. M.S. Whittingham and R.A. Huggins, J. Chem. Phys.54, 414 (1971).

    Article  CAS  Google Scholar 

  7. Y.-W. Hu, I.D. Raistrick, and R.A. Huggins, Mat. Res. Bull.11, 1227 (1976).

    Article  CAS  Google Scholar 

  8. B.C.H. Steele, Solid State Ionics12, 391 (1984).

    Article  CAS  Google Scholar 

  9. J.L Sudworth, P. Barrow, W. Dong, B. Dunn, G.C. Farrington, and J.O. Thomas, Mat. Res. Bull.22–26, March 2000.

  10. J.R. Macdonald, "Impedance spectroscopy: Emphasizing Solid Materials and System", Wiley-Interscience Publ., N.Y. (1987).

    Google Scholar 

  11. W. Weppner, Ionics9, 444 (2003).

    Article  CAS  Google Scholar 

  12. E.D. Tsagarakis and W. Weppner, Proceedings of the 198th Electrochemical Society Meeting (2000).

  13. W. Weppner, Z. Naturforsch.31a, 1336 (1976).

    CAS  Google Scholar 

  14. J. Liu and W. Weppner, Appl. Phys. A55, 250 (1992).

    Article  Google Scholar 

  15. E. Steudel and W. Weppner, Ionics2, 107 (1996).

    Article  CAS  Google Scholar 

  16. F.G. Cottrell, Z. Physik. Chem.42, 385 (1903).

    CAS  Google Scholar 

  17. Stefan, Wiener Sitzungsber.79II, 161 (1879).

  18. K.J. Vetter, "Elektrochemische Kinetik", Springer-Verlag, Berlin, Göttingen, Heidelberg (1961).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsagarakis, E.D., Weppner, W. Electrode kinetic phenomena of solid state ionic devices. Ionics 11, 240–247 (2005). https://doi.org/10.1007/BF02430383

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02430383

Keywords

Navigation