Skip to main content
Log in

Ultrastructural cytochemistry of complex carbohydrates in osteoblasts, osteoid, and bone matrix

  • Laboratory Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

Glycosaminoglycans (GAGs) and glycoproteins are essential components for osteogenesis. We have examined rat osteoblasts, osteoid, transitional zone, and fully calcified bone matrix, utilizing Spicer's high-iron diaminethiocarbohydrazide-silver protein (HID-TCH-SP) method for sulfated glycoconjugates and Thiéry's periodate-TCH-SP (PA-TCH-SP) method for vicinal glycol-containing glycoconjugates. HID-TCH-SP stained cytoplasmic granules of osteoblasts. Stain deposits in the extracellular matrix were observed in decreasing amounts in osteoid, the transitional zone, and fully calcified bone matrix. Enzyme digestion with testicular hyaluronidase removed most HID-TCH-SP stain deposits. PA-TCH-SP staining was observed with increasing intensity in rough endoplasmic reticulum, Golgi saccules, and cytoplasmic granules. Collagen fibrils in osteoid were weakly stained with PA-TCH-SP, and their staining appeared even weaker in fully calcified bone matrix. In contrast, collagen fibrils in calcified cartilage stained intensely with the PA-TCH-SP method. Focal circular profiles (0.1–0.5µm in diameter), which lacked collagen fibrils but reacted moderately with PA-TCH-SP, were frequently seen in the transitional zone and fully calcified bone matrix, but were only occasionally present in osteoid. The presence of testicular hyaluronidase-resistant GAG and acid phosphatase in these focal areas suggests that they represent sites of GAG degradation. The eventual loss of HID-TCH-SP staining in the bone matrix suggests that removal of sulfated glycoconjugates may be a requisite for expansion of initial calcification sites and/or complete calcification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Herring GM (1972) The organic matrix of bone. In: Bourne GH (ed) The Biochemistry and Physiology of Bone. Vol 1, Academic Press, New York, pp 127–189

    Google Scholar 

  2. Urist MR (1976) Biochemistry of calcification. In: Bourne GH (ed) The Biochemistry and Physiology of Bone, Vol. 4. Academic Press, New York, pp 1–59

    Google Scholar 

  3. Ashton BA, Triffitt JT, Herring GM (1974) Isolation and partial characterization of a glycoprotein from bovine cortical bone. Eur J Biochem 45:525–533

    Article  CAS  PubMed  Google Scholar 

  4. Triffit TJ, Owen M (1973) Studies on bone matrix glycoproteins. Incorporation of (1-14C) glucosamine and plasma (14C) glycoprotein into rabbit cortical bone. Biochem J 136:125–134

    Google Scholar 

  5. Weinstock M (1979) Radioautographic visualization of3H-fucose incorporation into glycoprotein by osteoblasts and its deposition into bone matrix. Calcif Tissue Int 27:177–185

    CAS  PubMed  Google Scholar 

  6. Campo RD (1970) Protein-polysaccharides of cartilage and bone in health and disease. Clin Orthop 68:182–209

    CAS  PubMed  Google Scholar 

  7. Glimcher MJ (1976) Composition, structure, and organization of bone and other mineralized tissues and the mechanism of calcification. In: Greep RO and Astwood EB (eds) Handbook of Physiology, Section 7: Endocrinology, Vol 7 Parathyroid Gland, American Physiological Society, Washington, D.C., pp. 25–116

    Google Scholar 

  8. Baylink D, Wergedal J, Thompson E (1972) Loss of protein-polysaccharides at sites where bone mineralization is initiated. J Histochem Cytochem 20:279–292

    CAS  PubMed  Google Scholar 

  9. Carneiro J, Leblond CP (1959) Role of osteoblasts and odontoblasts in secreting the collagen of bone and dentin, as shown by radioautography in mice given tritium labeled glycine. Exp Cell Res 18:291–300

    Article  CAS  PubMed  Google Scholar 

  10. Weinstock M (1975) Elaboration of precursor collagen by osteoblasts as visualized by radioautography after3H-proline administration. In Slavkin H and Greulich R (eds) Extracellular Matrix Influences on Gene Expression. Academic Press, New York, pp 119–128

    Google Scholar 

  11. Bennett G, Kan FWK, O'Shaughnessy D (1981) The site of incorporation of sialic acid residues into glycoproteins and the subsequent fates of these molecules in various rat and mouse cell types as shown by radioautography after injection of [3H] N-acetylmannosamine, II: Observations in tissues other than liver. J Cell Biol 88:16–28

    Article  CAS  PubMed  Google Scholar 

  12. Bélanger LF (1954) Autoradiographic visualization of the entry and transit of S35 in cartilage, bone and dentin of young rats and the effect of hyaluronidasein vitro. Can J Physiol Biochem 32:161–169

    Google Scholar 

  13. Leblond CP, Bélanger LF, Greulich RC (1955) Formation of bones and teeth as visualized by radioautography. Ann NY Acad Sci 60:630–659

    CAS  PubMed  Google Scholar 

  14. Tonna EA, Cronkite EP (1959) Histochemical and autoradiographic studies on the effects of aging on the mucopolysaccharides of the periosteum. J Biophys Biochem Cytol 6:171–177

    CAS  PubMed  Google Scholar 

  15. Scherft JP (1968) The ultrastructure of the organic matrix of calcified cartilage and bone in embryonic mouse radii. J Ultrastruct Res 23:333–343

    Article  Google Scholar 

  16. Bernard GW, Pease DC (1969) An electron microscopic study of initial intramembranous osteogenesis. Am J Anat 125:271–290

    Article  CAS  PubMed  Google Scholar 

  17. Bonnuci E (1971) The locus of initial calcification in cartilage and bone. Clin Orthop 78:108–139

    Google Scholar 

  18. Burstone MS (1959) Acid phosphatase activity of calcifying bone and dentin matrices. J Histochem Cytochem 7:147–148

    CAS  PubMed  Google Scholar 

  19. Heller-Steinberg M (1951) Ground substance, bone salts, and cellular activity in bone formation and destruction. Am J Anat 89:347–379

    Article  CAS  PubMed  Google Scholar 

  20. Löe H (1959) Bone tissue formation. A morphological and histochemical study. Acta Odontol Scand 17:311–437

    Google Scholar 

  21. Frank RM, Frank P (1969) Autoradiographie quantitative de l'ostéogenèse en microscopie électronique à l'aide de la proline tritiée. Z Zellforsch 99:121–133

    Article  CAS  PubMed  Google Scholar 

  22. Wright GM, Leblond CP (1981) Immunohistochemical localization of procollagens. III. Type I procollagen antigenicity in osteoblasts and prebone (osteoid). J Histochem Cytochem 29:791–804

    CAS  PubMed  Google Scholar 

  23. Sorvari TE (1972) Histochemical observations on the role of ferric chloride in the high-iron diamine technique for localizing sulfated mucosubstances. Histochem J 4:193–204

    Article  CAS  PubMed  Google Scholar 

  24. Spicer SS (1965) Diamine methods for differentiating mucosubstances histochemically. J Histochem Cytochem 13:211–234

    CAS  PubMed  Google Scholar 

  25. Spicer SS, Horn RG, Leppi TJ (1967) Histochemistry of connective tissue mucopolysaccharides. In Wagner BM and Smith DE (eds) The Connective Tissue. International Academy of Pathology Monograph. No. 7. Williams and Wilkins Co., Baltimore, pp 251–303

    Google Scholar 

  26. Sannes PL, Spicer SS, Katsuyama T (1979) Ultrastructural localization of sulfated complex carbohydrates with a modified iron diamine procedure. J Histochem Cytochem 27:1108–1111

    CAS  PubMed  Google Scholar 

  27. Spicer SS, Hardin JH, Setser ME (1978) Ultrastructural visualization of sulfated complex carbohydrates in blood and epithelial cells with the high-iron diamine procedure. Histochem J 10:435–452

    Article  CAS  PubMed  Google Scholar 

  28. Takagi M, Parmley RT, Denys FR (1981) Ultrastructural localization of complex carbohydrates in odontoblasts, predentin, and dentin. J Histochem Cytochem 29:747–758

    CAS  PubMed  Google Scholar 

  29. Thiéry JP (1967) Mise en évidence des polysaccharides sur coupes fines en microscopie électronique. J Microsc 6:987–1018

    Google Scholar 

  30. Spurr AR (1969) A low viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43

    Article  CAS  PubMed  Google Scholar 

  31. Barka T, Anderson PJ (1963) Histochemistry. Theory, Practice, and Bibliography. Harper and Row (Hoeber), New York pp 239–242

    Google Scholar 

  32. Robinson RA, Cameron DA (1956) Electron microscopy of cartilage and bone matrix at the distal epiphyseal line of the femur in the newborn infant. J Biophys Biochem Cytol 2:253–260

    Article  PubMed  Google Scholar 

  33. Scherft JP (1972) The lamina limitans of the organic matrix of calcified cartilage and bone. J Ultrastruct Res 38:318–331

    Article  CAS  PubMed  Google Scholar 

  34. Scott BJ, Pease DC (1956) Electron microscopy of the epiphyseal apparatus. Anat Rec 126:465–495

    Article  CAS  PubMed  Google Scholar 

  35. Thyberg J, Nilsson S, Friberg U (1975) Electron microscopic and enzyme cytochemical studies on the guinea pig metaphysis with special reference to the lysosomal system of different cell types. Cell Tiss Res 156:273–299

    CAS  Google Scholar 

  36. Coleman RA, Schofield BH, McDonald DF (1980) Selective localization of a Golgi apparatus acid phosphatase isoenzyme in bone using pyridoxal-5′-phosphate. J Histochem Cytochem 28:115–123

    CAS  PubMed  Google Scholar 

  37. Göthlin G, Ericsson JLE (1973) Fine structural localization of acid phosphomonoesterase in the osteoblasts and osteocytes of fracture callus. Histochemie 35:81–91

    Article  Google Scholar 

  38. Hanker JS, Dixon AD, Smiley GR (1973) Acid phosphatase in the Golgi apparatus of cells forming extracellular matrix of hard tissues. Histochemie 35:39–50

    Article  CAS  PubMed  Google Scholar 

  39. Engfeldt B, Hjerpe A (1972) Glycosaminoglycans of dentine and predentine. Calcif Tiss Res 10:152–159

    Article  CAS  Google Scholar 

  40. Nimni ME (1974) Collagen: Its structure and function in normal and pathological connective tissues. Seminars in Arthritis and Rheumatism 4:95–150

    Article  CAS  PubMed  Google Scholar 

  41. Goldstone A, Koenig H (1974) Synthesis and turnover of lysosomal glycoproteins. Relation to the molecular heterogeneity of the lysosomal enzymes. FEBS Lett 39:176–181

    Article  CAS  PubMed  Google Scholar 

  42. Irving JT (1958) A histological stain for newly calcified tissues. Nature 181:704–705

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takagi, M., Parmley, R.T., Toda, Y. et al. Ultrastructural cytochemistry of complex carbohydrates in osteoblasts, osteoid, and bone matrix. Calcif Tissue Int 35, 309–319 (1983). https://doi.org/10.1007/BF02405052

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02405052

Key words

Navigation