Skip to main content
Log in

Quantum tunneling of light particles in metals

  • Muon Diffusion
  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

The motion of a particle in a metallic crystal is studied for low temperatures where transitions between adjacent interstitial sites are caused by quantum tunneling. The influence of electrons and phonons on the hopping rate is taken into account by means of a functional integral method. The electronic influence may effectively be described by Ohmic damping which dominates the low temperature behavior of the defect motion. When subsequent tunneling transitions are statistically independent, the diffusion constant is found to obey a power law, D∼T2K−1, where K depends on the defect-electron interaction. This power law is limited at low temperatures by the effects of phonon excitations. Near the transition between electron and phonon dominated behavior the diffusion constant has a minimum where the precise temperature dependence of the rate depends not only on phonon spectra but also on the processes limiting phonon lifetimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Seeger and H. Teichler, inLa Diffusion dans les Milieux Condensés-Théories et Applications (Saclay: INSTN, 1976)

    Google Scholar 

  2. C.P. Flynn and A.M. Stoneham, Phys. Rev.B1, 3966 (1970)

    Article  ADS  Google Scholar 

  3. J. Yamashita and T. Kurosawa, J. Phys. Chem. Sol5, 34 (1958)

    Article  ADS  Google Scholar 

  4. T. Holstein, Ann. Phys. (NY)8, 325, 343 (1959)

    Article  ADS  Google Scholar 

  5. K. Huang and A. Rys, Proc. Roy. Soc. (London)A204, 406 (1951)

    ADS  Google Scholar 

  6. S. Pekar, Zh. Eksp. Teor. Fiz.20, 510 (1950).

    Google Scholar 

  7. J. Kondo, Physica125B, 279 (1984);126B, 377 (1984)

    Google Scholar 

  8. K. Yamada, Prog. Theor. Phys.72, 195 (1984)

    Article  ADS  Google Scholar 

  9. A.O. Caldeira and A.J. Leggett, Ann. Phys. (NY)149, 374 (1983)

    Article  ADS  Google Scholar 

  10. H. Grabert, U. Weiss and P. Hanggi, Phys. Rev. Lett.52, 2193 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  11. U. Weiss and H. Grabert, Phys. Lett.108A, 63 (1985)

    Article  ADS  Google Scholar 

  12. R.P. Feynman,Statistical Mechanics (Benjamin, New York, 1972); R.P. Feynman and F.L. Vernon, Ann. Phys. (NY)24, 118 (1963)

    Google Scholar 

  13. F. Guinea, Phys. Rev. Lett.53, 1268 (1984)

    Article  ADS  Google Scholar 

  14. J.P. Sethna, Phys. Rev.B24, 698 (1981);B25, 5050 (1982)

    Article  ADS  Google Scholar 

  15. H. Grabert, S. Linkwitz, S. Dattagupta and U. Weiss, to appear in Europhys. Lett.

  16. J. Zinn-Justin, Nucl. Phys.B218, 333 (1983)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grabert, H., Weiss, U. & Schober, H.R. Quantum tunneling of light particles in metals. Hyperfine Interact 31, 147–152 (1986). https://doi.org/10.1007/BF02401552

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02401552

Keywords

Navigation