Skip to main content
Log in

Degradation of Mn-doped BaTiO3 ceramic under a high d.c. electric field

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A manganese-doped BaTiO3 was investigated with regard to the degradation of resistivity under a high d.c. electric field. Degradation was measured as a function of time, composition and temperature, using an electric field of 3 Vμm−1. The activation energy of the process was found to be 1.13 eV. to clarify the mechanismI againstU characteristics andI againstT graphs of new, degraded and relaxed samples were studied. Electron paramagnetic resonance and potential measurements were found to be useful in describing the degradation. Finally, a brief model is put forward to account for the observed phenomena. It is based on an injection of oxygen vacancies from the anode, which is accompanied by a reduction of manganese in the lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Goto andS. Kachi,J. Phys. Chem. Sol. 32 (1971) 889.

    Article  CAS  Google Scholar 

  2. K. Lehovec andG. A. Shirn,J. Appl. Phys. 33 (1962) 889.

    Article  Google Scholar 

  3. D. A. Payne, Proceedings of the Sixth Annual Reliability Physics Symposium, IEEE, California (New York, 1968) p. 257.

  4. J. B. Macchesney, P. K. Gallagher andF. V. Dimarcello,J. Amer. Ceram. Soc. 46 (1963) 197.

    CAS  Google Scholar 

  5. K. Okazaki andH. Igaraski,Ferroelectrics 27 (1979) 263.

    Google Scholar 

  6. W. A. Schulze, L. E. Cross andW. R. Buessem,J. Amer. Ceram. Soc.,63 (1980) 83.

    CAS  Google Scholar 

  7. W. J. Minford,IEEE Trans. Components, Hybrids, Manuf. Technol.,5 (1982) 297.

    Article  Google Scholar 

  8. R. M. Gruver, W. R. Buessem, C. W. Dickey andJ. W. Anderson,Tech. Rept. AFML-TR-66-164 (1966) 223.

  9. V. Ya. Kunin, A. N. Tsikin andN. A. Shturbina,Sov. Phys. Solid State 11 (1968) 598.

    Google Scholar 

  10. D. D. Glower andR. C. Heckman,J. Chem. Phys. 41 (1964) 877.

    Article  CAS  Google Scholar 

  11. C. Schaffrin,Phys. Status Solidi (a) 35 (1976) 79.

    CAS  Google Scholar 

  12. R. Wernicke,Philips Res. Rep. 31 (1976) 526.

    CAS  Google Scholar 

  13. T. Takeda andA. Watanabe,J. Phys. Soc. Jpn. 21 (1966) 267.

    Article  CAS  Google Scholar 

  14. H. J. Hagemann, Ph.D. Thesis, RWTH Aachen (1980).

  15. T. I. Prokopowicz andA. R. Vaskas, Final Rep., ECOM-90705-F (1969); MTIS AD-864068.

  16. L. Benguigui,J. Phys. Chem. Solids 34 (1973) 573.

    CAS  Google Scholar 

  17. H. J. Hagemann,Ber. Dt. Keram. Ges. 55 (1978) 353.

    CAS  Google Scholar 

  18. J. B. Desu andE. C. Subbarao, “Advances in Ceramics”, Vol. I, edited by L. M. Levinson (American Ceramic Society, Ohio, 1981) p. 189.

    Google Scholar 

  19. H. Ikushima andS. Hayakawa,J. Phys. Soc. Jpn. 19 (1964) 1986.

    CAS  Google Scholar 

  20. M. Nakahara andT. Murakami,J. Appl. Phys. 45 (1974) 3795.

    Article  CAS  Google Scholar 

  21. R. Wernicke, Personal communication.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Based on a thesis submitted by J. Rödel for the diploma degree at the Department of Ceramics, University of Erlangen, West Germany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rödel, J., Tomandl, G. Degradation of Mn-doped BaTiO3 ceramic under a high d.c. electric field. J Mater Sci 19, 3515–3523 (1984). https://doi.org/10.1007/BF02396925

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02396925

Keywords

Navigation