Skip to main content
Log in

The low temperature quadrupole orientation of103Ru in ruthenium

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

The quadrupole frequencyv Q =e 2 qQ/h of103Ru (Z=44,N=59) in a ruthenium single crystal has been measured using the technique of low temperature quadrupole orientation to bev Q (103RuRu)=−14.7(5) MHz. Temperatures below 2 mK were reached in this experiment using a PrNi5 demagnetization stage attached to a3He−4He dilution refrigerator. Using the measured magnitude of the RuRu electric field gradient (EFG) at low temperatures |eq(RuRu)|=1.02(3)×1017 V.cm−2 [1] and adopting the sign ofeq(RuRu) to be negative from systematics, this result yields a value for the ground-state electric quadrupole moment of103Ru ofQ(103Ru)=+0.59(2) b. This moment may be interpreted using the weak coupling model of de-Shalit [2]. A Korringa constant for103RuRu ofC K=39(6) Ks was measured in this experiment. Taking advantage of a small iridium contamination of the ruthenium single crystal, the quadrupole moment of the192Ir ground state was determined to beQ(192Ir)=+2.12(25) b. The sign of the IrRu electric field gradient was found to be negative as a result of this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Kotthaus and R. Vianden, Hyp. Int. 14(1983)99.

    Article  Google Scholar 

  2. A. de-Shalit, Phys. Rev. 122(1961)1530.

    Article  ADS  Google Scholar 

  3. D.A. Arseniev, A. Sobiczewski and V.G. Soloviev, Nucl. Phys. A139(1969)269.

    Article  ADS  Google Scholar 

  4. W. Fabian, G.E.W. Horlacher and K. Albrecht, Nucl. Phys. A190(1972)533.

    Article  ADS  Google Scholar 

  5. A. Faessler, J.E. Galonska, U. Gotz and H.C. Pauli, Nucl. Phys. A230(1974)302.

    Article  ADS  Google Scholar 

  6. J. Rekstad, Nucl. Phys. A247(1975)7.

    Article  ADS  Google Scholar 

  7. D.W. Murray, A.L. Allsop and N.J. Stone, Hyp. Int. 11(1981)127.

    Article  Google Scholar 

  8. D.I. Bradley, A.L. Allsop and N.J. Stone,LT17 (Contributed Papers), ed. U. Eckern, A. Schmid, W. Weber and H. Wuhl, (Elsevier Science Publ. B.V., 1984) p. 1159.

  9. R.M. Steffen and K. Alder, in:The Electromagnetic Interaction in Nuclear Spectroscopy, ed. W.D. Hamilton (North-Holland, Amsterdam, 1975) p. 583.

    Google Scholar 

  10. K.S. Krane, Phys. Rev. C27(1983)411.

    Article  ADS  Google Scholar 

  11. E. Hagn, K. Leuthold, E. Zech and H. Ernst, Z. Phys. A295(1980)385.

    Article  Google Scholar 

  12. F. Bacon, J.A. Barcley, W.D. Brewer, D.A. Shirley and J.E. Templeton, Phys. Rev. B5(1972)2397.

    Article  ADS  Google Scholar 

  13. Table of Isotopes, 7th Ed. ed. C.M. Lederer and V.S. Shirley (Wiley, New York, 1978).

    Google Scholar 

  14. G. Eska, Ph.D. Thesis (University of Münich, 1971) unpublished.

  15. G. Wortman, B. Perscheid, G. Kaindl and F.E. Wagner, Hyp. Int. 9(1981)343.

    Article  Google Scholar 

  16. F.E. Wagner, Hyp. Int. 13(1983)149.

    Article  Google Scholar 

  17. H. Miyahara, T. Gotoh and T. Watanabe, Int. J. Appl. Radiat. & Isot. 32(1981)573.

    Article  Google Scholar 

  18. M. Oshima, Z. Matumoto and T. Tamura, J. Phys. Soc. Japan 51(1982)43.

    Article  Google Scholar 

  19. P. Raghavan, E.N. Kaufmann, R.S. Raghavan, E.J. Ansaldo and R.A. Naumann, Phys. Rev. B13(1976)2835.

    Article  ADS  Google Scholar 

  20. T.P. Das and M. Pomerantz, Phys. Rev. 123(1961)2070.

    Article  ADS  Google Scholar 

  21. R.W.G. Wyckoff,Crystal Structure, Vol. 1 (Wiley, New York, 1966).

    Google Scholar 

  22. L. Hermans, M. Rots and J. Van Cauteren, Hyp. Int. 15(1983)253.

    Article  Google Scholar 

  23. F.D. Feiock and W.R. Johnson, Phys. Rev. 187(1969)39.

    Article  ADS  Google Scholar 

  24. E. Matthias, S.S. Rosenblum and D.A. Shirley, Phys. Rev. B139(1965)532.

    Article  ADS  Google Scholar 

  25. O.C. Kistner and A.H. Lumpkin, Phys. Rev. C13(1976)1132.

    Article  ADS  Google Scholar 

  26. A. Alzner, E. Bodenstedt, G. Gemunden, C. Hermann, H. Munning, H. Reif, H.J. Rudolph, R. Vianden and U. Wrede, Z. Phys. A317(1984)107.

    Article  Google Scholar 

  27. E. Hagn, J. Wese and G. Eska, Z. Phys. A299(1981)353.

    Article  Google Scholar 

  28. V.R. Vanin, A. Passaro and A.M.P. Passaro, Phys. Rev. C32(1985)1349.

    Article  ADS  Google Scholar 

  29. S. Buttgenbach, R. Dicke, H. Gebauer, R. Kuhnen and F. Traber, Z. Phys. A 286(1978)125.

    Article  Google Scholar 

  30. S. Landsberger, R. Lecompte, P. Paradis and S. Monaro, Phys. Rev. C21(1980)588.

    Article  ADS  Google Scholar 

  31. G.K. Hubler, H.W. Kugel and D.E. Murnick, Phys. Rev. C9(1974)1954.

    Article  ADS  Google Scholar 

  32. J. Korringa, Physica 16(1950)601.

    Article  MATH  Google Scholar 

  33. M. Bernasson, P. Descouts, J.L. Page and R. Prina, J. Phys. F1(1971)334.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Green, V.R., Stone, N.J. The low temperature quadrupole orientation of103Ru in ruthenium. Hyperfine Interact 30, 355–369 (1986). https://doi.org/10.1007/BF02394330

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02394330

Keywords

Navigation