Skip to main content
Log in

High-field solid-state 35Cl NMR in selenium(IV) and tellurium(IV) hexachlorides

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

We report solid-state 35Cl NMR spectra in three hexachlorides, (NH4)2SeCl6, (NH4)2TeCl6 and Rb2TeCl6. The C Q (35Cl) quadrupole coupling constants in the three compounds were found to be 41.4±0.1 MHz, 30.3±0.1 MHz and 30.3±0.1 MHz, respectively, some of the largest C Q (35Cl) quadrupole coupling constants ever measured in polycrystalline powdered solids directly via 35Cl NMR spectroscopy. The 35Cl EFG tensors are axial in all three cases reflecting the C 4v point group symmetry of the chlorine sites. 35Cl NMR experiments in these compounds were only made possible by employing the WURST-QCPMG pulse sequence in the ultrahigh magnetic field of 21.1 T. 35Cl NMR results agree with the earlier reported 35Cl NQR values and with the complementary plane-wave DFT calculations. The origin of the very large C Q (35Cl) quadrupole coupling constants in these and other main-group chlorides lies in the covalent-type chlorine bonding. The ionic bonding in the ionic chlorides results in significantly reduced C Q (35Cl) values as illustrated with triphenyltellurium chloride Ph3TeCl. The high sensitivity of 35Cl NMR to the chlorine coordination environment is demonstrated using tetrachlorohydroxotellurate hydrate K[TeCl4(OH)]∙0.5H2O as an example. 125Te MAS NMR experiments were performed for tellurium compounds to support 35Cl NMR findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. J. D. Mackenzie and M. E. Smith, Multinuclear Solid-State NMR of Inorganic Materials, Pergamon (2002).

    Google Scholar 

  2. P. Pyykkö, Mol. Phys., 106, 1965 (2008).

    Article  Google Scholar 

  3. G. K. Semin, T. A. Babushkina, and G. G. Yakobson, Nuclear Quadrupole Resonance in Chemistry, John Wiley & Sons, New York (1975).

    Google Scholar 

  4. Yu. A. Buslaev, E. A. Kravcenko, and L. Kolditz, Coord. Chem. Rev., 82, 9 (1987).

    Article  Google Scholar 

  5. J. Fraissard and O. Lapina (eds.), Explosives Detection Using Magnetic and Nuclear Resonance Techniques. NATO Science for Peace and Security Series B: Physics and Biophysics, Springer (2009).

    Google Scholar 

  6. Ju. H. Krieger, S. G. Kozlova, S. P. Gabuda, G. N. Chehova, and Yu. N. Dyadin, Sov. Phys. Solid State, 27, 1875 (1985).

    Google Scholar 

  7. L. Pang, F. Brisse, and E. A. C. Lucken, Can. J. Chem., 73, 351 (1995).

    Article  CAS  Google Scholar 

  8. P. M. J. Szell and D. L. Bryce, Annu. Rep. NMR Spectrosc., 84, 115 (2015).

    Article  Google Scholar 

  9. D. L. Bryce, C. M. Widdifield, R. P. Chapman, and R. J. Attrell, Chlorine, Bromine, and Iodine Solid-State NMR. Encyclopedia of Magnetic Resonance, Wiley (2011).

    Book  Google Scholar 

  10. C. M. Widdifield, R. P. Chapman, and D. L. Bryce, Annu. Rep. NMR Spectrosc., 66, 195 (2009).

    Article  CAS  Google Scholar 

  11. R. P. Chapman, C. M. Widdifield, and D. L. Bryce, Prog. Nucl. Magn. Reson. Spectrosc., 55, 215 (2009).

    Article  CAS  Google Scholar 

  12. R. W. Schurko, Acc. Chem. Res., 46, 1985 (2013).

    Article  CAS  Google Scholar 

  13. R. W. Schurko, Acquisition of Wideline Solid-State NMR Spectra of Quadrupolar Nuclei. Encyclopedia of Magnetic Resonance, Wiley (2011).

    Book  Google Scholar 

  14. L. A. O’Dell, A. J. Rossini, and R. W. Schurko, Chem. Phys. Lett., 468, 330 (2009).

    Article  Google Scholar 

  15. L. A. O’Dell and R. W. Schurko, Chem. Phys. Lett., 464, 97 (2008).

    Article  Google Scholar 

  16. M. P. Hildebrand, H. Hamaed, A. M. Namespetra, J. M. Donohue, R. Fu, I. Hung, Z. Gan, and R. W. Schurko, CrystEngComm, 16, 7334 (2014).

    Article  CAS  Google Scholar 

  17. R. P. Chapman, J. R. Hiscock, P. A. Gale, and D. L. Bryce, Can. J. Chem., 89, 822 (2011).

    Article  CAS  Google Scholar 

  18. H. Hamaed, J. M. Pawlowski, B. F. T. Cooper, R. Fu, S. H. Eichhorn, and R. W. Schurko, J. Am. Chem. Soc., 130, 11056 (2008).

    Article  CAS  Google Scholar 

  19. R. P. Chapman and D. L. Bryce, Phys. Chem. Chem. Phys., 9, 6219 (2007).

    Article  CAS  Google Scholar 

  20. R. P. Chapman and D. L. Bryce, Phys. Chem. Chem. Phys., 11, 6987 (2009).

    Article  CAS  Google Scholar 

  21. C. A. O’Keefe, K. E. Johnston, K. Sutter, J. Autschbach, R. Gauvin, J. Trébosc, L. Delevoye, N. Popoff, M. Taoufik, K. Oudatchin, and R. W. Schurko, Inorg. Chem., 53, 9581 (2014).

    Article  Google Scholar 

  22. K. E. Johnston, C. A. O’Keefe, R. M. Gauvin, J. Trébosc, L. Delevoye, J.-P. Amoureux, N. Popoff, M. Taoufik, K. Oudatchin, and R. W. Schurko, Chem. Eur. J., 19, 12396 (2013).

    Article  CAS  Google Scholar 

  23. A. J. Rossini, R. W. Mills, G. A. Briscoe, E. L. Norton, S. J. Geier, I. Hung, S. Zheng, J. Autschbach, and R. W. Schurko, J. Am. Chem. Soc., 131, 3317 (2009).

    Article  CAS  Google Scholar 

  24. B. E. G. Lucier, K. E. Johnston, W. Xu, J. C. Hanson, S. D. Senanayake, S. Yao, M. W. Bourassa, M. Srebro, J. Autschbach, and R. W. Schurko, J. Am. Chem. Soc., 136, 1333 (2014).

    Article  CAS  Google Scholar 

  25. M. A. Hanson, V. V. Terskikh, K. M. Baines, and Y. Huang, Inorg. Chem., 53, 7377 (2014).

    Article  CAS  Google Scholar 

  26. F. A. Perras and D. L. Bryce, Angew. Chem., Int. Ed., 51, 4227 (2012).

    Article  CAS  Google Scholar 

  27. F. A. Perras, C. M. Widdifield, and D. L. Bryce, Solid State Nucl. Magn. Reson., 45/46, 36 (2012).

    Article  Google Scholar 

  28. W. C. Fernelius, Inorganic Synthesis, vol. 2, McGraw-Hill, N.-Y. (1946).

    Book  Google Scholar 

  29. J. B. Milne, E. J. Gabe, and C. Bensimon, Can. J. Chem., 69, 648 (1991).

    Article  CAS  Google Scholar 

  30. M. J. Collins, J. A. Ripmeester, and J. F. Sawyer, J. Am. Chem. Soc., 109, 4113 (1987).

    Article  CAS  Google Scholar 

  31. D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calvé, B. Alonso, J.-O. Durand, B. Bujoli, Z. Gan, and G. Hoatson, Magn. Reson. Chem., 40, 70 (2002).

    Article  CAS  Google Scholar 

  32. S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson, and M. C. Payne, Z. Kristallogr., 220, 567 (2005).

    CAS  Google Scholar 

  33. M. Profeta, F. Mauri, and C. J. Pickard, J. Am. Chem. Soc., 125, 541 (2003).

    Article  CAS  Google Scholar 

  34. C. J. Pickard and F. Mauri, Phys. Rev. B, 63, 245101 (2001).

    Article  Google Scholar 

  35. J. R. Yates, C. J. Pickard, and F. Mauri, Phys. Rev. B, 76, 024401 (2007).

    Article  Google Scholar 

  36. G. Engel, Z. Kristallogr., Kristallgeom., Kristallphys., Kristallchem., 90, 341 (1935).

    CAS  Google Scholar 

  37. W. Abriel, Acta Crystallogr. C, 42, 1113 (1986).

    Article  Google Scholar 

  38. A. C. Hazell, Acta Chem. Scand., 20, 165 (1966).

    Article  CAS  Google Scholar 

  39. M. Webster and P. H. Collins, J. Chem. Soc., Dalton Trans., 588 (1973).

    Google Scholar 

  40. B. Krebs and F.-P. Ahlers, Adv. Inorg. Chem., 35, 235 (1990).

    Article  CAS  Google Scholar 

  41. S. P. Gabuda, S. G. Kozlova, O. B. Lapina, and V. V. Terskikh, Chem. Phys. Lett., 282, 245 (1998).

    Article  CAS  Google Scholar 

  42. S. P. Gabuda and S. G. Kozlova, J. Phys. Chem. B, 110, 18091 (2006).

    Article  CAS  Google Scholar 

  43. S. P. Gabuda and S. G. Kozlova, J. Struct. Chem., 38, 140 (1997).

    Article  CAS  Google Scholar 

  44. S. G. Kozlova, S. P. Gabuda, and R. Blinc, Chem. Phys. Lett., 376, 364 (2003).

    Article  CAS  Google Scholar 

  45. D. Nakamura, K. Ito, and M. Kubo, J. Am. Chem. Soc., 84, 163 (1962).

    Article  CAS  Google Scholar 

  46. D. Nakamura, K. Ito, and M. Kubo, Inorg. Chem., 2, 61 (1963).

    Article  CAS  Google Scholar 

  47. R. K. Chadha and J. M. Miller, Can. J. Chem., 60, 2256 (1982).

    Article  CAS  Google Scholar 

  48. J. Pietikäinen, A. Maaninen, R. S. Laitinen, R. Oilunkaniemi, and J. Valkonen, Polyhedron, 21, 1089 (2002).

    Article  Google Scholar 

  49. S. M. Närhi, R. Oilunkaniemi, R. S. Laitinen, and M. Ahlgrén, Acta Crystallog., Sect. E, 60, o798 (2004).

    Article  Google Scholar 

  50. M. J. Collins, J. A. Ripmeester, and J. F. Sawyer, J. Am. Chem. Soc., 110, 8583 (1988).

    Article  CAS  Google Scholar 

  51. S. Hayashi and K. Hayamizu, Magn. Reson. Chem., 30, 658 (1992).

    Article  CAS  Google Scholar 

  52. R. F. Ziolo and M. Extine, Inorg. Chem., 19, 2964 (1980).

    Article  CAS  Google Scholar 

  53. A. Chopra, S. Jain, S. K. Srivastava, S. K. Gupta, and R. J. Butcher, Acta Crystallog., Sect. E., 70, o421 (2014).

    Article  CAS  Google Scholar 

  54. R. Oilunkaniemi, J. Pietikäinen, R. S. Laitinen, and M. Ahlgrén, J. Organomet. Chem., 640, 50 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Terskikh.

Additional information

Commemorating the 80th anniversary of Professor S. P. Gabuda

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 57, No. 2, pp. 325-334, March- April, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terskikh, V.V., Pawsey, S. & Ripmeester, J.A. High-field solid-state 35Cl NMR in selenium(IV) and tellurium(IV) hexachlorides. J Struct Chem 57, 308–318 (2016). https://doi.org/10.1134/S0022476616020104

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476616020104

Keywords

Navigation