Skip to main content
Log in

Mechanisms for release of sediment-bound phosphate to water and the effects of agricultural land management on fluvial transport of particulate and dissolved phosphate

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Sediment-bound phosphate includes organic and inorganic forms, but the inorganic fraction contains most of the P that can be released into water. The non-apatite inorganic P (NAIP) fraction of sediment-bound phosphate varies considerably with geochemistry and anthropogenic additions (fertilizer, livestock wastes, P adsorbed from municipal wastewater discharges). A small fraction of the NAIP is sufficiently labile to desorb into water, and this release can be described by dissolution or adsorption/ desorption mechanisms. Agricultural practices, such as phosphate fertility management and conservation tillage, which affect the levels of phosphate and sediment leaving the land, will determine the partition of sediment-bound P and dissolved P in water draining into lakes, with implications for the availability of that phosphate to phytoplankton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amer, F., Bouldin, D. R., Black, C. A. & Duke, F. R., 1955. Characterization of soil phosphorus by anion exchange resin adsorption and P32-equilibration. Plant Soil. 6: 391–408.

    Article  CAS  Google Scholar 

  • Bache, B. W. & Williams, E. G., 1971. A phosphate sorption index of soils. J. Soil Sci. 22: 289–301.

    CAS  Google Scholar 

  • Baker, J. L., 1980. Agricultural areas as nonpoint sources of pollution. In: Overcash, M. R. & Davitson, J. M. (Eds.) Environmental Impact of Nonpoint Source Pollution. Ann Arbor Science. pp. 275–310.

  • Barrow, N. J., 1974. Effect of previous additions of phosphate on phosphate adsorption by soils. Soil Sci. 118: 82–89.

    CAS  Google Scholar 

  • Barrow, N. J., 1978. The description of phosphate adsorption curves. J. Soil Sci. 29: 447–462.

    CAS  Google Scholar 

  • Barrow, N. J., 1980. Differences among some North American soils in the rate of reaction with phosphate. J. environ. Qual. 9: 644–648.

    CAS  Google Scholar 

  • Bierman, V. J., 1980. A comparison of models developed for phosphorus management in the Great Lakes. In: Loehr, R. C., Martin, C. S. & Rast, W. (Eds.) Phosphorus Management Strategies for Lakes, pp. 235–258. Ann Arbor Science.

  • Bray, R. H. & Kurtz, L. T., 1945. Determination of total, organic and available forms of phosphorus in soils. Soil Sci. 59: 39–45.

    CAS  Google Scholar 

  • Chang, S. C. & Jackson, M. L., 1957. Fractionation of soil phosphorus. Soil Sci. 84: 133–134.

    CAS  Google Scholar 

  • Chien, S. H. & Clayton, W. R., 1980. Application of Elovich equation to the kinetics of phosphate release and sorption in soils. Soil Sci. Soc. Am. J. 44: 265–268.

    CAS  Google Scholar 

  • Corps of Engineers, Buffalo District, 1979. Lake Erie Management Study Methodology Report. Buffalo, N.Y. 146 pp.

  • Evans, R. L. & Jurinak, J. J., 1976. Kinetics of phosphate release from a desert soil. Soil Sci. 121: 205–211.

    CAS  Google Scholar 

  • Green, D. B., Logan, T. J. & Smeck, N. E., 1978. Phosphate adsorption-desorption characteristics of suspended sediments in the Maumee River Basin of Ohio. J. environ. Qual. 7: 208–212.

    CAS  Google Scholar 

  • Griffin, R. A. & Jurinak, J. J., 1974. Kinetics of the phosphate interaction with calcite. Soil Sci. Soc. Am. Proc. 38: 75–79.

    Google Scholar 

  • Holford, I. C. R., Wedderburn, R. W. M. & Mattingly, G. E. G., 1974. A Langmuir two-surface equation as a model for phosphate adsorption by soils. J. Soil Sci. 25: 242–255.

    Google Scholar 

  • Hope, G. D. & Syers, J. K., 1976. Effects of solution: soil ratio on phosphate sorption by soils. J. Soil Sci. 27: 301–306.

    CAS  Google Scholar 

  • Huettl, P. J., Wendt, R. C. & Corey, R. B., 1979. Prediction of algal-available phosphorus in runoff suspensions. J. environ. Qual. 8: 130–132.

    CAS  Google Scholar 

  • Johnson, A. H., Bouldin, D. R., Goyette, E. A. & Hodges, A. M., 1976. Phosphorus loss by stream transport from a rural watershed: quantities, processes and sources. J. environ. Qual. 5: 148–157.

    CAS  Google Scholar 

  • Lake, J. & Morrison, J., 1975. Environmental impact of land use on water quality. Black Creek Progress Report. USEPA Region V. EPA-905/9–75–006. 229 pp.

  • Li, W. C., Armstrong, D. E., Williams, J. D. H., Harris, R. F. & Syers, J. K., 1972. Rate and extent of inorganic phosphorus exchange in lake sediments. Soil Sci. Soc. Am. Proc. 36: 279–285.

    CAS  Google Scholar 

  • Lee, G. F., Jones, R. A. & Rast, W., 1980. Availability of phosphorus to phytoplankton and its implications for phosphorus management strategies. In: Loehr, R. C., Martin, C. S. & Rast, W. (Eds.) Phosphorus Management Strategies for Lakes, pp. 59–310. Ann Arbor Science.

  • Logan, T. J., Oloya, T. O. & Yaksich, S. M., 1979. Phosphate characteristics and bioavailability of suspended sediments from streams draining into Lake Erie. J. Great Lakes Res. 5: 112–123.

    CAS  Google Scholar 

  • Logan, T. J., 1980. The role of soil and sediment chemistry in modeling nonpoint sources of phosphorus. In: Overcash, M. R. & Davidson, J. M. (Eds.) Environmental Impact of Nonpoint Source Pollution, pp. 189–208. Ann Arbor Science.

  • Logan, T. J., 1981a. The effects of conservation tillage on phosphate transport from agricultural land. Lake Erie Management Study. Technical Report Series. Corps of Engineers, Buffalo District, Buffalo, N.Y. 25 pp.

  • Logan, T. J., 1981b. The Maumee River Basin Pilot Watershed Study. Vol. III. Continued watershed monitoring (1978–80). Great Lakes National Program, Office. USEPA, Region V, Chicago, II. 56 pp.

    Google Scholar 

  • McCallister, D. L. & Logan, T. J., 1978. Phosphate adsorptiondesorption characteristics of soils and bottom sediments in the Maumee River Basin of Ohio. J. environ. Qual. 7: 87–92.

    CAS  Google Scholar 

  • McDowell, L. L., Schreiber, J. D. & Pionke, H. B., 1980. Estimating soluble (PO4-P) and labile phosphorus in runoff from croplands. In: Knisel, W. G. (Ed.) CREAMS: a Field-Scale Model for Chemicals, Runoff and Erosion from Agricultural Management Systems, USDA Conservation Research Report. No. 26. Chap. 14, pp. 509–533.

  • O'Connor, P. W. & Syers, J. K., 1975. Comparison of methods for the determination of total phosphorus in water containing particulate material. J. environ. Qual. 4: 347–350.

    Google Scholar 

  • Oloya, T. O. & Logan, T. J., 1980. Phosphate desorption from soils and sediments with varying levels of extractable phosphate. J. environ. Qual. 9: 526–531.

    CAS  Google Scholar 

  • Olsen, S. R., Cole, C. V., Watanabe, F. & Dean, L. A., 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circular No. 939. 19 pp.

  • Olsen, S. R. & Watanabe, F. S., 1957. A method to determine a phosphorus adsorption maximum of soils as measured by the Langmuir isotherm. Soil Sci. Soc. Am. Proc. 21: 144–149.

    CAS  Google Scholar 

  • Porter, K. S., 1975. Nitrogen and phosphorus, food production, waste and the environment. Ann Arbor Science, Ann Arbor, Mich. 372 pp.

    Google Scholar 

  • Rajan, S. S. S. & Fox, R. L., 1975. Phosphate adsorption by soils. II. Reactions in tropical acid soils. Soil Sci. Soc. Am. Proc. 39: 846–851.

    CAS  Google Scholar 

  • Rao, P. S. C., Davidson, J. M., Berkheiser, V. E., Au, L. T., Street, J. J., Wheeler, W. B. & Yuan, T. L., 1980. Retention and transformation of selected pesticides and phosphorus in soil-water systems: a critical review. Environ. Res. Laboratory. USEPA-ORD. Athens, GA. 342 pp.

    Google Scholar 

  • Romkens, M. J. M., Nelson, D. W. & Mannering, J. V., 1973. Nitrogen and phosphorus composition of surface runoff as affected by tillage methods. J. environ. Qual. 2: 292–295.

    Google Scholar 

  • Romkens, M. J. M. & Nelson, D. W., 1974. Phosphorus relationships in runoff from fertilized fields. J. environ. Qual. 3: 10–14.

    CAS  Google Scholar 

  • Ryden, J. C., McLaughlin, J. R. & Syers, J. K., 1977. Time-dependent sorption of phosphate by soils and hydrous ferric oxides. J. Soil Sci. 28: 585–595.

    CAS  Google Scholar 

  • Sharpley, A. N., Syers, J. K. & Tillman, R. W., 1978. An improved soil-sampling procedure for the prediction of dissolved inorganic phosphate concentrations in surface runoff from pasture. J. environ. Qual. 7: 455–456.

    CAS  Google Scholar 

  • Sharpley, A. N., Ahwja, L. H., Yamamoto, M. & Menzel, R. G., 1981. The kinetics of phosphorus desorption from soil. Soil Sci. Soc. Am. J. 45: 493–496.

    CAS  Google Scholar 

  • Sibbesen, E., 1981. Some new equations to describe phosphate sorption by soils. J. Soil Sci. 32: 67–74.

    CAS  Google Scholar 

  • Smith, G. E., Blanchar, R. & Burwell, R. E., 1979. Fertilizers and pesticides in runoff and sediment from claypan soil. Completion Report. B-099-MO. Missouri Water Resources Research Center, Columbia. 60 pp.

    Google Scholar 

  • Syers, J. K., Harris, R. F. & Armstrong, D. E., 1973. Phosphate chemistry in lake sediments. J. environ. Qual. 2: 1–14.

    CAS  Google Scholar 

  • Standard Methods for the Examination of Water and Wastewater, 1975, 13th edn. American Public Health Assoc., Washington, D.C., 874 pp.

  • Taylor, A. W. & Kunishi, H. M., 1971. Phosphate equilibria on stream sediment and soil in a watershed draining an agricultural region. J. agric. Fd Chem. 19: 827–831.

    Google Scholar 

  • Verhoff, F. H., 1982. The transport of sediment and sediment related materials in rivers. These proceedings.

  • Williams, J. D. H., Syers, J. K. & Walker, T. W., 1967. Fractionation of soil inorganic phosphate by a modification of Chang and Jackson's procedure. Soil Sci. Am. Proc. 31: 736–739.

    CAS  Google Scholar 

  • Williams, J. D. H., Jaquet, J. M. & Thomas, R. L., 1976a. Forms of phosphorus in surficial sediments of Lake Erie. J. Fish. Res. Bd Can. 33: 413–429.

    CAS  Google Scholar 

  • Williams, J. D. H., Murphy, T. P. & Mayer, T., 1976b. Rates of accumulation of phosphorus forms in Lake Erie sediments. J. Fish. Res. Bd Can. 33: 430–439.

    CAS  Google Scholar 

  • Williams, J. D. H., Syers, J. K., Harris, R. F. & Armstrong, D. E., 1971a. Fractionation of inorganic phosphate in calcareous lake sediments. Soil Sci. Soc. Am. Proc. 35: 250–255.

    CAS  Google Scholar 

  • Williams, J. D. H., Syers, J. K., Armstrong, D. E. & Harris, R. F., 1971b. Characterization of inorganic phosphate in noncalcareous lake sediment. Soil Sci. Soc. Am. Proc. 35: 556–561.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Logan, T.J. Mechanisms for release of sediment-bound phosphate to water and the effects of agricultural land management on fluvial transport of particulate and dissolved phosphate. Hydrobiologia 91, 519–530 (1982). https://doi.org/10.1007/BF02391966

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02391966

Keywords

Navigation