Skip to main content
Log in

Dentine proteoglycans: composition, ultrastructure and functions

  • Review
  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Summary

Proteoglycans (PGs) have been visualized in the predentine and dentine with cationic dyes by staining thin sections with Alcian Blue, bismuth nitrate, or using Spicer's high-iron diamine (HID) method. The precise location may be obtained by adding cationic dyes such as Cuprolinic Blue, ruthenium hexammine trichloride or cationic detergent (cetylpyridinium chloride) to the fixative. These methods induced the formation of aggregates which varied in shape and number according to the method used. Rapid freezing followed by freeze-substitution revealed an amorphous ground substance, homogeneously stained with Alcian Blue, located in the predentine between the collagen fibres. These PGs may be involved in transport and diffusion in predentine. In dentine, small granules and needle-like structures were observed along the collagen fibres. This second group of PGs differs in composition, distribution and functions from the predentine PGs. The same distribution was seen when hyaluronidase-gold labelling was used. Labelling with antibodies and autoradiography also gave evidence of two distinct groups of PGs. In predentine, as an hydrated gel, PGs seems to act as mineral inhibitors, whereas immobilized on a surface, as seen at the dentine edge, they act as nucleating agents. The interaction between PGs and phospholipids seems also to play a role in the mineralization process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bélanger,L. F. (1954) Autoradiographic visualization of the entry and transit of S35 in cartilage, bone and dentine of young rats and the effects of hyaluronidase in vitro.Can. J. Physiol. Biochem. 32, 161–9.

    Google Scholar 

  • Bendayan,M. (1984) Enzyme-gold electron microscopic cytochemistry: a new affinity approach for the ultrastructural localization of macromolecules.J. Electron. Microsc. Tech. 1, 349–72.

    CAS  Google Scholar 

  • Bevelander,G. &Johnson,P. L. (1955) The localization of polysaccharides in developing teeth.J. Dent. Res. 34, 121–31.

    Google Scholar 

  • Blanquet,P. R. (1976) Ultrahistochemical study on the ruthenium red surface staining. II. Nature and affinity of the electron dense marker.Histochemistry 47, 175–89.

    PubMed  CAS  Google Scholar 

  • Blumenthal,N. C.,Posner,A. S.,Silverman,L. D. &Rosenberg,L. C. (1979) Effect of proteoglycans on in vitro hydroxyapatite formation.Calcif. Tissue Int. 27, 75–82.

    PubMed  CAS  Google Scholar 

  • Bonucci,E. (1984) Crystal-matrix relationships in calcifying organic matrices. InTooth Morphogenesis and Differentiation (edited byBelcourt,A. B. &Ruch,J. V.) pp. 459–71. Paris: INSERM.

    Google Scholar 

  • Bonucci,E. &Reurink,J. (1978) The fine structure of decalcified cartilage and bone: a comparison between decalcification procedures performed before and after embedding.Calcif. Tissue Res. 25, 179–90.

    Article  PubMed  CAS  Google Scholar 

  • Branford-White,C. J. (1978) Molecular organization of heparan sulphate proteoglycan from human dentine.Arch. Oral Biol. 23, 1141–4.

    Google Scholar 

  • Bratt, P., Anderson, M. M., Mansson-Rahemtulla, B., Steven, J. W., Zhou, C. &Rahemtulla, F. (1992) Isolation and characterization of bovine gingival proteoglycans versican and decorin.Int. J. Biochem. (in press).

  • Buee,L.,Boyle,N. J.,Zhang,L.,Delacourte,A. &Fillit,H. M. (1991) Optimization of an alcian blue dot-blot assay for the detection of glycosaminoglycans and proteoglycans.Anal. Biochem. 195, 238–42.

    Article  PubMed  CAS  Google Scholar 

  • Butler,W. T. (1984) Matrix macromolecules of bone and dentine.Collagen Rel. Res. 4, 297–307.

    CAS  Google Scholar 

  • Caterson,B.,Calabro,T. &Hampton,A. (1987) Monoclonal antibodies as probes for elucidating proteoglycan structure and function. InBiology of Proteoglycans (edited byWight,T. N. &Mecham,R. P.) pp. 1–26. Orlando, FL: Academic Press.

    Google Scholar 

  • Chardin,H.,Septier,D. &Goldberg,M. (1990a) Visualization of glycosaminoglycans in rat incisor predentin and dentin with cetylpyridinium chloride-glutaraldehyde as fixative.J. Histochem. Cytochem. 38, 885–94.

    PubMed  CAS  Google Scholar 

  • Chardin,H.,Londono,I. &Goldberg,M. (1990b) Visualization of glycosaminoglycans in rat incisor extracellular matrix using a hyaluronidase-gold complex.Histochem. J. 22, 588–94.

    Article  PubMed  CAS  Google Scholar 

  • Chen,C. C. &Boskey,A. L. (1985) Mechanisms of proteoglycan inhibition of hydroxyapatite growth.Calcif. Tissue Int. 37, 395–400.

    PubMed  CAS  Google Scholar 

  • Chen,C. C.,Boskey,A. L. &Rosenberg,L. C. (1984) The inhibitory effect of cartilage proteoglycans on hydroxyapatite growth.Calcif. Tissue Int. 36, 285–90.

    PubMed  CAS  Google Scholar 

  • Choi,H. U.,Tang,L.-H.,Johnson,T. L. &Rosenberg,L. (1985) Proteoclygans from bovine nasal and articular cartilages. Fractionation of the link proteins by wheat germ agglutinin affinity chromatography.J. Biol. Chem. 260, 13 370–6.

    CAS  Google Scholar 

  • Clark,R. D.,Smith,J. G. &Davidson,E. A. (1965) Hexosamine and acid glycosaminoglycans in human teeth.Biochim. Biophys. Acta 101, 267–72.

    PubMed  CAS  Google Scholar 

  • David,G. (1991) Biology and pathology of the pericellular heparan sulphate proteoglycans.Biochem. Soc. Trans. 19, 816–20.

    PubMed  CAS  Google Scholar 

  • Denbesten,P. K.,Awbret,B. J.,Treadwell,B. V. (1989) Similarities between a proteinase in secretory enamel matrix and a neutral metalloproteinase found in cartilage. In ‘Tooth Enamel V’ (edited byFearnhead,R. W.) 278–82. Yokohama: Florence.

    Google Scholar 

  • Dimuzio,M. T. &Veis,A. (1978) The biosynthesis of phosphoryns and dentin collagen in the continuously erupting rat incisor.J. Biol. Chem. 253, 6845–52.

    PubMed  CAS  Google Scholar 

  • Ellingson,J. S.,Smith,M. &Larson,L. R. (1977) Phospholipid composition and fatty acid profiles of the phospholipids in bovine predention.Calcif. Tissue Res. 24, 127–133.

    Article  PubMed  CAS  Google Scholar 

  • Embery,G. (1974) The isolation of chondroitin 4-(35S)sulphate from the molar teeth of young rats receiving sodium (35S)sulphate.Calc. Tissue Res. 14, 59–65.

    Article  CAS  Google Scholar 

  • Embery,G. &Smalley,J. W. (1980) The influence of fluoride on the uptake of radiosulphate by rat incisor odontoblastsin vitro.Arch. Oral Biol. 25, 659–62.

    PubMed  CAS  Google Scholar 

  • Engfeldt,B. &Hjerpe,A. (1972) Glycosaminoglycans of dentine and predentine.Calcif. Tissue Res. 10, 152–9.

    Article  PubMed  CAS  Google Scholar 

  • Engfeldt,B. &Hjertqvist,S. P. (1968) Studies on the epiphyseal growth zone. The preservation of acid glycosaminoglycans in tissues in some histochemical procedures for electron microscopy.Virchows Arch B, Cell Path 1, 222–9.

    CAS  Google Scholar 

  • Erickson,H. P. (1993) Gene knockouts of c-src, transforming growth factor β1, and tenascin suggest superfluous, nonfunctional expression of proteins.J. Cell Biol. 120, 1079–81.

    Article  PubMed  CAS  Google Scholar 

  • Fakan, J. &Gautier, A. (1977) Ruthenium hexammine trichloride (RHT): a new cytochemical reagent for extracellular mucosubstances.Biol. Cell 29, 25a.

    Google Scholar 

  • Finkelman,R. D.,Mohan,S.,Jenninos,J. C.,Taylor,A. K.,Jepsen,S. &Baylink,D. J. (1990) Quantitation of growth factors IGF-I, SGF/IGF-II, and TGF-β in human dentin.J. Bone Mineral Res. 5, 717–23.

    CAS  Google Scholar 

  • Fisher,L. W.,Termine,J. D.,Dejter,S. W.,Whitson,S. W.,Yanagishita,M.,Kimura,J. H.,Hascall,V. C.,Kleinman,H. K.,Hassel,J. R. &Nilsson,B. (1983) Proteoglycans of developing bone.J. Biol. Chem. 258, 6588–94.

    PubMed  CAS  Google Scholar 

  • Frank,R. M. (1970) Autoradiographie de la dentinogénèse en microscopie électronique à l'aide de proline tritiée chez le chat.Arch. Oral Biol. 15, 583–96.

    PubMed  CAS  Google Scholar 

  • Fullmer,H. M. &Alpher,N. (1958) Histochemical polysaccharide reaction in human developing teeth.Lab. Invest. 7, 163–70.

    PubMed  CAS  Google Scholar 

  • Gad,A. &Sylven,B. (1969) On the nature of the high iron diamine method for sulfomucins.J. Histochem. Cytochem. 17, 156–60.

    PubMed  CAS  Google Scholar 

  • Geyer,G. &Linss,W. (1978) Toluidine blue staining of cartilage subunits.Acta Histochem. 61, 127–34.

    PubMed  CAS  Google Scholar 

  • Geyer,G.,Helmke,U. &Christner,A. (1971) Ultrahistochemical demonstration of alcian blue stained mucosubstances by sulfide-silver reaction.Acta Histochem. 40, 80–5.

    PubMed  CAS  Google Scholar 

  • Glant,T. (1982) Concanavalin A-binding link protein in the proteoglycan aggregate of hyaline cartilage.Biochem. Biophys. Res. Comm. 106, 158–63.

    Article  PubMed  CAS  Google Scholar 

  • Glant,T. &Levai,G. (1983) Localisation of antigenic components in proteoglycan aggregate of bovine nasal cartilage.Histochemistry 77, 217–32.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg,M. &Escaig,F. (1984) The appearance in TEM of proteoglycan predentine is fixation dependant.J. Micros. 134, 161–7.

    Google Scholar 

  • Goldberg,M. &Escaig,F. J. (1985) Incorporation of (35S)sulfate and (3H)glucosamine into glycosaminoglycans in rat incisor predentine and dentine: comparison by autoradiography of fixation by rapid-freezing, freeze-substitution and aldehyde fixation.Calcif Tissue Int. 37, 511–8.

    PubMed  CAS  Google Scholar 

  • Goldberg,M. &Escaig,F. (1987) Rapid-freezing and malachite green-acrolein-osmium tetroxide freeze-substitution fixation improve visualization of extracellular lipids in rat incisor pre-dentin and dentin.J. Histochem. Cytochem. 35, 427–33.

    PubMed  CAS  Google Scholar 

  • Goldberg,M. &Septier,D. (1983) Electron microscopic visualization of proteoglycans in rat incisor predentine and dentine with cuprolinic blue.Arch. Oral Biol. 28, 79–83.

    PubMed  CAS  Google Scholar 

  • Goldberg,M. &Septier,D. (1984) Effect of dissociative extraction with 1.5 M calcium chloride on proteoglycans in rat-incisor predentine visualized with cuprolinic blue.Arch. Oral Biol. 29, 131–5.

    PubMed  CAS  Google Scholar 

  • Goldberg,M. &Septier,D. (1985) Improved lipid preservation by malachite green-glutaraldehyde fixation in rat incisor predentine and dentine.Arch Oral Biol. 30, 717–26.

    PubMed  CAS  Google Scholar 

  • Goldberg,M. &Septier,D. (1986) Visualization of proteoglycans and membrane-associated components in rat incisor predentine and dentine using ruthenium hexammine trichloride.Arch. Oral Biol. 31, 205–12.

    PubMed  CAS  Google Scholar 

  • Goldberg,M. &Septier,D. (1992) Differential staining of glycosaminoglycans in the predentine and dentine of rat incisor using Cuprolinic Blue at various magnesium chloride concentrations.Histochem. J. 24, 648–54.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg,M.,Triller,M.,Escaig,F.,Genotelle-Septier,D. &Weill,R. (1976) Detection sur coupes ultrafines de mucopolysacchardies acides par le bleu alcian dans les tissus dentaires inclus en Epon.J. Biol. Buccale 4, 155–64.

    PubMed  CAS  Google Scholar 

  • Goldberg,M.,Genotelle-Septier,D. &Weill,R. (1978) Glycoprotéines et protéoglycanes dans la matrice prédentinaire et dentinaire chez le rat: une étude ultrastructurale.J. Biol. Buccale 6, 75–90.

    PubMed  CAS  Google Scholar 

  • Goldberg,M.,Molon-Noblot,M. &Septier,D. (1980) Effets de deux methodes de déminéralisation sur la préservation des glycoprotéines et des protéoglycanes dans les dentines intercanaliculaires et péricaniculaires chez le cheval.J. Biol. Buccale 8, 315–30.

    PubMed  CAS  Google Scholar 

  • Goldberg,M.,Septier,D. &Escaig-Haye,F. (1987) Glycoconjugates in dentinogenesis and dentine.Prog. Histochem. Cytochem. 17, 1–113.

    PubMed  CAS  Google Scholar 

  • Goldberg,M.,Lecolle,S.,Lesot,H. &Ruch,J. V. (1990) Effects of cerulenin, an inhibitor of fatty acid synthesis on reconstitution of the dental basement membrane.Biol. Cell 69, 27–33.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg,M.,Chardin,H.,Septier,D. &Lecolle,S. (1992) Co-distribtuion of proteoglycans and phospholipids in predentin and dentin.J. Dent. Res. 72, 128, 531 (abstract).

    Google Scholar 

  • Hassell,J. R.,Kimura,J. H. &Hascall,V. C. (1986) Proteoglycan core protein families.Ann. Rev. Biochem. 55, 539–67.

    PubMed  CAS  Google Scholar 

  • Hayashi,Y. (1988) Ultrastructural demonstration of the carbohydrate in the developing mantle dentine with soybean agglutinin-gold complexes.J. Electron Microsc. 37, 150–4.

    Google Scholar 

  • Hishikawa,H. (1992) Ultrastructural immunocytochemistry of proteoglycans in predentin and dentin of rat incisors.Nihon Univ. Dent. J. 65, 966–78.

    Google Scholar 

  • Hjerpe,A. &Engfeldt,B. (1976) Proteoglycans of dentine and predentine.Calcif. Tissue Res. 22, 173–82.

    PubMed  CAS  Google Scholar 

  • Hjerpe,A.,Antonopoulos,C. A.,Engfeldt,B. &Wikstrom,B. (1983) Analysis of dentine glycosaminoglycans using high-performance liquid chromatography.Calcif. Tissue Int. 35, 496–501.

    PubMed  CAS  Google Scholar 

  • Hunter,G. K. (1991) Role of proteoglycan in the provisional calcification of cartilage.Clin. Orthop. 262, 256–80.

    PubMed  Google Scholar 

  • Hunter,G. K.,Heertsche,J. N. M. &Aubin,J. E. (1984) Proteoglycan synthesis and deposition in fetal rat bone.Biochemistry 23, 1572–6.

    PubMed  CAS  Google Scholar 

  • Hunter,G. K.,Allen,B. L.,Grynpas,M. D. &Cheng,P. T. (1985) Inhibition of hydroxyapatite formation in collagen gels by chondroitin sulphate.Biochem. J. 228, 463–9.

    PubMed  CAS  Google Scholar 

  • Hunziker,E. B.,Herrmann,W. &Schenk,R. K. (1982) Improved cartilage fixation by ruthenium hexammine trichloride (RHT). A prerequisite for morphometry in growth cartilage.J. Ulstrastruct. Res. 81, 1–12.

    CAS  Google Scholar 

  • Hunziker,E. G.,Herrmann,W. &Schenk,R. K. (1983) Ruthenium hexammine trichloride (RHT) mediated interaction between plasmalemmal components and pericellular matrix proteoglycans is responsible for the preservation of chondrocytic plasma membrane in situ during cartilage fixation.J. Histochem. Cytochem. 31, 717–27.

    PubMed  CAS  Google Scholar 

  • Idelman,S. (1963) Action du méthanol-chloroforme sur les liposomes des cellules cortico-surrénales.C. R. Acad. Sci. Paris 257, 297–8.

    PubMed  CAS  Google Scholar 

  • Iozzo,RV (1988) Cell surface heparan sulfate proteoglycan and thé neoplastic phenotype.J. Cell Biochem. 37, 61–78.

    Article  PubMed  CAS  Google Scholar 

  • Jones,I. L. &Leaver,A. G. (1974) Glycosaminoglycans of human dentine.Calc. Tissue Res. 16, 37–44.

    Article  CAS  Google Scholar 

  • Kazama,T.,Takagi,M.,Ishi,T. &Toda,Y. (1992) Immunoelectron microscopic studies of glycosaminoglycans in the metaphyseal bone trabeculae of growing rats.Histochem. J. 24, 747–55.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy,J. S. &Kennedy,G. D. C. (1957) Sulphated mucopolysaccharides in rodent teeth.J. Anat. 91, 398–408.

    PubMed  CAS  Google Scholar 

  • Kogaya,Y. &Nanci,A. (1992) Post-embedding staining with high-iron diamine-thiocarbohydrazide-silver proteinate and its application to visualizing sulfated glycoconjugates in cryofixed kidney and cartilage.J. Histochem. Cytochem. 40, 1257–67.

    PubMed  CAS  Google Scholar 

  • Kogaya,Y.,Kato,T. &Furuhashi,K. (1987) Ultrastructural visualization of proteoglycans in dentine forming sites of developing rat molar tooth germs by use of ruthenium hexammine trichloride (RHT).J. Electron Microsc. 36, 40–4.

    CAS  Google Scholar 

  • Kuettner,K. E. &Kimura,J. H. (1985) Proteoglycans: an overview.J. Cell Biochem. 27, 327–36.

    Article  PubMed  CAS  Google Scholar 

  • Lau,E. C.-M.,Boukari,A.,Arechaga,J.,Osman,M. &Ruch,J. V. (1983) (35S) autoradiographic study of sulfated GAG accumulation and turnover in embryonic mouse tooth germs.J. Carniofacial Genet. Develop. Biol. 3, 117–31.

    CAS  Google Scholar 

  • Laurent,T. C.,Bjork,I.,Pietruszkiewietz,A. &Persson,A. (1963) On the interaction between polysaccharides and other molecules and other macromolecules. II. The transport of globular particles through hyaluronic acid solutions.Biochim. Biophys. Acta 78, 351–9.

    PubMed  CAS  Google Scholar 

  • Laurent,T. C.,Preston,B. N.,Pertoft,H.,Gustafsson,G. &Mccabe,M. (1975) Diffusion of linear polymers in hyaluronate solutions.Europ. J. Biochem. 33, 129–36.

    Google Scholar 

  • Lev,R. &Spicer,S. S. (1965) A histochemical comparison of human epithelial mucins in normal and in hypersecretory states including pancreatic cystic fibrosis.Am. J. Pathol. 46, 23–47.

    PubMed  CAS  Google Scholar 

  • Linde,A. (1984) Noncollagenous proteins and proteoglycans in dentinogensis. InDentin and Dentinogenesis (edited byLinde,A.) Vol. II, pp. 55–79. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Linde,A. (1989) Dentin matrix proteins: composition and possible functions in calcification.Anat. Rec. 224, 154–66.

    Article  PubMed  CAS  Google Scholar 

  • Linde, A. &Goldberg, M. (1993) Dentinogenesis.Crit. Rev. Oral Biol. Med. (in press).

  • Linde,A. &Persliden,B. (1977) Cathepsin D activity in isolated odontoblasts.Calc. Tissue Res. 23, 33–8.

    Article  CAS  Google Scholar 

  • Linde,A.,Bhown,M. &Butler,W. T. (1980) Noncollagenous proteins of dentin. A reexamination of proteins from rat incisor dentin utilizing techniques to avoid artifacts.J. Biol. Chem. 255, 5931–42.

    PubMed  CAS  Google Scholar 

  • Linde,A.,Lussi,A. &Crenshaw,MA (1989) Mineral induction by immobilized polyanionic proteins.Calcif. Tissue Int. 44, 286–95.

    PubMed  CAS  Google Scholar 

  • Lormée,P.,Lecolle,S.,Septier,D.,LeDenmat,D. &Goldberg,M. (1989) Autometallography for histochemical visualization of rat incisor polyanions with cuprolinic blue.J. Histochem. Cytochem. 37, 203–8.

    PubMed  Google Scholar 

  • Luft,J. H. (1971) Ruthenium red and violet. II. Fine structural localization in animal tissues.Anat. Rec. 171, 369–416.

    PubMed  CAS  Google Scholar 

  • Maier,G. D.,Lechner,J. H. &Veis,A. (1983) The dynamics of formation of a collagen phosphophoryn conjugate in relation to the passage of the mineralization front in the rat incisor dentine.J. Biol. Chem. 258, 1450–5.

    PubMed  CAS  Google Scholar 

  • Malchiodi Albedi,F.,Cassano,A. M.,Ciaralli,F.,Donelli,G.,Mingazzini,P. &Marinozzi,V. (1988) Influence of cetylpyridinium chloride on the ultrastructural appearance of sulphated glycosaminoglycans in human colonic mucosa.Histochemistry 89, 397–401.

    PubMed  CAS  Google Scholar 

  • Mitchell,N.,Shepard,N. &Harrod,J. (1982) The measurement of proteoglycan in the mineralizing region of the rat growth plate.J. Bone Joint Surg. 64, 32–8.

    PubMed  CAS  Google Scholar 

  • Murata,Y.,Fryer,J. R. &Baird,T. (1976) Molecular image of copper phtalocyanine.J. Microsc..108, 261–75.

    CAS  Google Scholar 

  • Nagai,N. &Takuma,S. (1973) Electron probe and electron microscopic studies of acid mucopolysaccharides in developing rat molars.J. Dent. Res. 52, 386.

    PubMed  CAS  Google Scholar 

  • Nagai,N.,Takuma,S.,Goto,Y. &Ogiwara,H. (1974) Electron microscopy of dentine and predentine of developing rat molars stained with ruthenium red.J. Biol. Buccale 2, 73–83.

    PubMed  CAS  Google Scholar 

  • Nakai,M.,Tatemoto,Y.,Mori,H. &Mori,M. (1985) Lectin-binding patterns in the developing tooth.Histochemistry 83, 455–63.

    Article  PubMed  CAS  Google Scholar 

  • Nygren,H.,Hansson,H. A., &Linde,A. (1976) Ultrastructural localisation of proteoglycans in the odontoblast-predentin region of rat incisor.Cell Tissue Res. 168, 277–87.

    Article  PubMed  CAS  Google Scholar 

  • Nygren,H.,Persliden,B.,Hansson,H. A. &Linde,A. (1979) Cathepsin D: ultra-immunohistochemical localization in dentinogenesis.Calcif. Tissue Int. 29, 251–6.

    PubMed  CAS  Google Scholar 

  • Pincus,P. (1950) Sulphated mucopolysaccharides in human dentine.Nature 166, 187.

    PubMed  CAS  Google Scholar 

  • Poole,A. R. (1986) Proteoglycans in health and disease: structures and functions.Biochem. J. 236, 1–14.

    PubMed  CAS  Google Scholar 

  • Poole,A. R.,Pidoux,I. &Rosenberg,L. (1982a) Role of proteoglycans in endochondral ossification: immunofluorescent localization of link protein and proteoglycan monomer in bovine fetal epiphyseal growth plate.J. Cell Biol. 92, 249–60.

    Article  PubMed  CAS  Google Scholar 

  • Poole,A. R.,Pidoux,I.,Reiner,A. &Rosenberg,L. (1982b) An immunoelectron microscope study of the organization of proteoglycan monomer, link protein, and collagen in the matrix of articular cartilage.J. Cell Biol. 93, 921–37.

    PubMed  CAS  Google Scholar 

  • Prince,C. W.,Rahemtulla,F. &Butler,W. T. (1983) Metabolism of rat bone proteoglycansin vivo.Biochem. J. 216, 589–96.

    PubMed  CAS  Google Scholar 

  • Prince,C. W.,Rahemtulla,F. &Butler,W. T. (1984) Incorporation of (35S)sulphate into glycosaminoglycans by mineralized tissuesin vivo.Biochem. J. 224, 941–5.

    PubMed  CAS  Google Scholar 

  • Quintarelli,G. &Dellovo,M. C. (1963) Mucopolysaccharide histochemistry of rat tooth germs.Histochemie 3, 195–207.

    Article  CAS  Google Scholar 

  • Rahemtulla,F.,Prince,C. W. &Butler,W. T. (1984) Isolation and partial characterization of proteoglycans from rat incisors.Biochem. J. 218, 877–85.

    PubMed  CAS  Google Scholar 

  • Rahemtulla,F.,Malmstrom,A. &Heinegard,D. (1988) Monoclonal antibodies to dermatan sulfate proteoglycans of soft connective tissues.J. Dent. Res. 67 (special issue), 373a.

    Google Scholar 

  • Rizzoli,G. (1955) Ricerca sulla natura e distribuzione dei mucopolisaccaridi nei tssuti animali.Riv. Istoch norm. pat 1, 345–82.

    CAS  Google Scholar 

  • Rizzoli,G. &Gliozzi,M. A. (1955) Sulla coloratione con l'Alcian 8GN dei mucopolisaccaridi acidi separati per elettroforesi su carta.Boll. Soc. Ital. Biol. 31, 1–3.

    Google Scholar 

  • Rosenberg,L.,Hellmann,W. &Kleinschmidt,A. K. (1970) Macromolecular models of protein-polysaccharides from bovine nasal cartilage based on electron microscope studies.J. Biol. Chem. 245, 4123–30.

    PubMed  CAS  Google Scholar 

  • Rosenberg,L.,Hellmann,W. &Kleinschmidt,A. K. (1975) Electron microscopic studies of proteoglycan aggregates from bovine articular cartilage.J. Biol. Chem. 250, 1877–83.

    PubMed  CAS  Google Scholar 

  • Ruch,J. V. (1985) Determinism of odontogenesis.Cell Biol. Rev. 14, 1–86.

    Google Scholar 

  • Ruggieri,A.,Dell'orbo,C. &Quacci,D. (1977) Electron microscopic visualization of proteoglycans with Ruthenium Red.Histochem. J. 9, 249–52.

    Google Scholar 

  • Sannes,P. L.,Spicer,S. S. &Katsuyama,T. (1979) Ultrastructural localization of sulfated complex carbohydrates with a modified iron diamine procedure.J. Histochem. Cytochem. 27, 1108–11.

    PubMed  CAS  Google Scholar 

  • Sauren,Y. M. H. F.,Mieremet,R. H. P.,Groot,C. G. &Scherft,J. P. (1992) An electron microscopic study on the presence of proteoglycans in the mineralized matrix of rat and human compact lamellar bone.Anat. Rec. 232, 36–44.

    Article  PubMed  CAS  Google Scholar 

  • Schofield,B. H.,Williams,B. R. &Doty,S. B. (1975) Alcian Blue staining of cartilage for electron microscopy. Application of the critical electrolyte concentration principle.Histochem. J. 7, 139–49.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz,N. B.,Habib,G.,Cambell,S.,D'elvlyni,Gartner, M.,Krueger,R.,Olson,C. &Philipson,L. (1985) Synthesis and structure of proteoglycan core protein.Fed. Proc. 44, 369–72.

    PubMed  CAS  Google Scholar 

  • Scott,J. E. (1972) Histochemistry of Alcian Blue. III. The molecular biologic basis of staining by Alcian Blue 8GX and analogous phtalocyanins.Histochemie 32, 191–212.

    Article  PubMed  CAS  Google Scholar 

  • Scott,J. E. (1980) Collagen-proteoglycans interactions. Localization of proteoglycans in tendon by electron microscopy.Biochem. J. 187, 887–91.

    PubMed  CAS  Google Scholar 

  • Scott,J. E. (1988) Proteoglycan-fibrillar collagen interactions.Biochem. J. 252, 313–23.

    PubMed  CAS  Google Scholar 

  • Scott,J. E. &Dorling,J. (1965) Differential staining of acid glycosaminoglycans (mucopolysaccharides) by Alcian blue in salt solutions.Histochemie 5, 222–33.

    Article  Google Scholar 

  • Scott,J. E. &Kyffin,T. W. (1978) Demineralization in organic solvent by alkylammonium salts of ethylenediamine tetracetic acid.Biochem. J. 169, 697–701.

    PubMed  CAS  Google Scholar 

  • Scott,J. E.,Quintarelli,G. &Dellovo,M. C. (1964) The chemical and histochemical properties of Alcian Blue I. The mechanism of Alcian Blue staining.Histochemie 4, 73–85.

    Article  PubMed  CAS  Google Scholar 

  • Scott,J. E.,Orford,C. R. &Hughes,E. W. (1981) Proteoglycan-collagen arrangement in developing rat tail tendon. An electron microscopical and biochemical investigation.Biochem. J. 195, 573–81.

    PubMed  CAS  Google Scholar 

  • Scott,J. E.,Chen,Y.,Brass,A. (1992) Secondary and tertiary structures involving chondroitin and chondroitin sulphates in solution, investigated by rotary shadowing/electron microscopy and computer simulation.Eur. J. Biochem. 209, 675–80.

    Article  PubMed  CAS  Google Scholar 

  • Serafini-Fracassini,A. &Smith,J. W. (1966) Observations on the morphology of the protein-polysaccharide complex of bovine nasal cartilage and its relationships to collagen.Proc. Roy. Soc. Series B 165, 440–9.

    CAS  Google Scholar 

  • Shepard,N. &Mitchell,N. (1967a) The localization of proteoglycan by light and electron microscopy using Safranin O.J. Ultrastruct. Res. 54, 451–60.

    Google Scholar 

  • Shepard,N. &Mitchell,N. (1976b) Simultaneous localization of proteoglycan by light and electron microscopy using toluidine blue O. A study of epiphyseal cartilage.J. Histochem. Cytochem. 24, 621–9.

    PubMed  CAS  Google Scholar 

  • Shepard,N. &Mitchell,N. (1977a) The localization of articular cartilage proteoglycan by electron microscopy.Anat. Rec. 187, 463–76.

    Article  PubMed  CAS  Google Scholar 

  • Shepard,N. &Mitchell,N. (1977b) The use of ruthenium red andp-phenylenediamine to stain cartilage simultaneously for light and electron microscopy.J. Histochem. Cytochem. 25, 1163–8.

    PubMed  CAS  Google Scholar 

  • Shepard,N. &Mitchell,N. (1981) Acridine orange stabilization of glycosaminoglycans in beginning endochondral ossification. A comparative light and electron microscopic study.Histochemistry 70, 107–14.

    Article  PubMed  CAS  Google Scholar 

  • Shepard,N. &Mitchell,N. (1985) Ultrastructural modifications of proteoglycans coincident with mineralization in local regions of rat growth plate.J. Bone Joint Surg. 67, 455–64.

    PubMed  CAS  Google Scholar 

  • Smalley,J. W. &Embery,G. (1976) Effect of fluoride on molecular size of proteoglycans in the rat incisor tooth.Arch. Oral Biol. 21, 703–4.

    PubMed  CAS  Google Scholar 

  • Smalley,J. W. &Embery,G. (1980) The influence of fluoride admininstration on the structure of proteoglycans in the developing rat incisor.Biochem. J. 190, 263–72.

    PubMed  CAS  Google Scholar 

  • Smith,J. W. (1970) The disposition of protein polysaccharide in the epiphyseal plate cartilage of young rabbit.J. Cell Sci. 6, 843–64.

    PubMed  CAS  Google Scholar 

  • Sorvari,T. E. (1972) Histochemical observations on the role of ferric chloride in the high-iron diamine technique for localizing sulphated mucosubstances.Histochem. J. 4, 193–204.

    Article  PubMed  CAS  Google Scholar 

  • Spicer,S. S. (1965) Diamine methods for differentiating muco-substances histochemically.J. Histochem. Cytochem. 13, 211–34.

    PubMed  CAS  Google Scholar 

  • Sundstrom,B. (1971) New aspects in the utilization of inorganic sulphate during dentin formation.Histochemie 26, 61–6.

    PubMed  CAS  Google Scholar 

  • Symons,N. B. B. (1961) A histochemical study of the intertubular and peritubular matrices in normal human dentine.Arch. Oral Biol. 5, 241–250.

    Google Scholar 

  • Symons,N. B. B. (1968) The formation of primary and secondary dentine. InDentine and Pulp (edited bySymons,N. B. B.) pp. 67–76. London: Livingstone.

    Google Scholar 

  • Szirmai,J. A. (1963) Quantitative approaches in the histo-chemistry of mucopolysaccharides.J. Histochem. Cytochem. 11, 24–34.

    CAS  Google Scholar 

  • Takagi,M.,Parmley,R. T. &Denys,F. R. (1981) Ultrastructural localization of complex carbohydrates in odontoblasts, predentin, and dentin.J. Histochem. Cytochem. 29, 747–58.

    PubMed  CAS  Google Scholar 

  • Takagi,M.,Parmley,R. T.,Toda,Y. &Austin,R. L. (1982a) Ultrastructural cytochemistry and immunocytochemistry of sulfated glycosaminoglycans in epiphyseal cartilage.J. Histochem. Cytochem. 30, 1179–85.

    PubMed  CAS  Google Scholar 

  • Takagi,M.,Parmley,R. T.,Toda,Y. &Denys,F. R. (1982b) Extracellular and intracellular digestion of complex carbohydrates by osteoclasts.Lab. Invest. 46, 288–97.

    PubMed  CAS  Google Scholar 

  • Takagi,M.,Parmley,R. T.,Toda,Y. &Denys,F. R. (1983) Ultrastructural cytochemistry of complex carbohydrates in osteoblasts, osteoid, and bone matrix.Calcif. Tissue. Int. 35, 309–19.

    PubMed  CAS  Google Scholar 

  • Takagi,M.,Saito,I.,Kuwata,F. &Otsuka,K. (1988) Specific binding of peanut agglutinin and soybean agglutinin to chondroitinase ABC-digested cartilage proteoglycans: histochemical, ultrastructural, cytochemical, and biochemical characterization.Histochem. J. 20, 88–98.

    Article  PubMed  CAS  Google Scholar 

  • Takagi,M.,Hishikawa,H.,Hosokawa,Y.,Kagami,A. &Rahemtulla,F. (1990) Immunohistochemical localization of glycosaminoglycans and proteoglycans in predentin and dentin of rat incisors.J. Histochem. Cytochem. 38, 319–24.

    PubMed  CAS  Google Scholar 

  • Takagi,M.,Maeno,M.,Kagami,A.,Takahashi,Y. &Otsuka,K. (1991) Biochemical and immunmocytochemical characterization of mineral binding proteoglycans in rat bone.J. Histochem. Cytochem. 39, 41–50.

    PubMed  CAS  Google Scholar 

  • Takagi,M.,Maeno,M.,Takahashi,Y. &Otsuka,K. (1992) Biochemical and immuno- and lectin-histochemical studies of solubility and retention of bone matrix proteins during EDTA demineralization.Histochem. J. 24, 78–85.

    Article  PubMed  CAS  Google Scholar 

  • Takuma,S. &Eda,S. (1966) Structure and development of the peritubular matrix in dentin.J. Dent. Res. 45, 683–92.

    Google Scholar 

  • Tenorio,D.,Reid,A. R. &Katchburian,E. (1990) Ultrastructural visualisation of proteoglycans in early unmineralized dentine of rat tooth germs stained with cuprolinic blue.J. Anat. 169, 257–64.

    PubMed  CAS  Google Scholar 

  • Thomopoulos,G. N.,Schulte,B. A. &Spicer,S. S. (1983) The influence of embedding media and fixation on the postembedment ultrastructural demonstration of complex carbohydrates. III High iron diamine staining for sulfated glycoconjugates.J. Histochem. Cytochem. 31, 871–8.

    PubMed  CAS  Google Scholar 

  • Thomopoulos,G. N.,Schulte,B. A. &Spicer,S. S. (1987) Postembedment staining complex carbohydrates: influence of fixation and embedding procedures.J. Electron Microsc. Tech. 5, 17–44.

    Article  CAS  Google Scholar 

  • Thyberg,J. (1977) Electron microscopy of cartilage proteoglycans.Histochem. J. 9, 259–66.

    Article  PubMed  CAS  Google Scholar 

  • Thyberg,J.,Lohmander,S. &Friberg,V. (1973) Electron microscopic demonstration of proteoglycans in guinea pig epiphyseal cartilage.J. Ultrastruct. Res. 45, 407–27.

    Article  PubMed  CAS  Google Scholar 

  • Tice,L. W. &Barrnett,R. J. (1965) Diazophthalocyanins as reagents for fine structural cytochemistry.J. Cell Biol. 25, 23–41.

    PubMed  CAS  Google Scholar 

  • Toda,N.,Doi,A.,Jimbo,A.,Matsumoto,I. &Seno,N. (1981) Interaction of sulfated glycosaminoglycans with lectins.J. Biol. Chem. 256, 5345–9.

    PubMed  CAS  Google Scholar 

  • VanKuppevelt,T. H. M. S. M.,Rutten,T. L. &Kuyper,C. M. A. (1987) Ultrastructural localization of proteoglycans in tissue using Cuprolinic Blue according to the critical electrolyte concentration method: comparison with biochemical data from the literature.Histochem. J. 19, 520–6.

    Article  PubMed  Google Scholar 

  • Weill,R. (1959) Etude histochimique de la dentine.Ann. Histochim. 4, 59–71.

    CAS  Google Scholar 

  • Weinstock,A. (1972) Matrix development in mineralizing tissues as shown by radioautography: formation of enamel and dentin. InDevelopmental Aspects of Oral Biology (edited bySlavkin,H. C. &Bavetta,L. A.) pp. 201–42. New York: Academic Press.

    Google Scholar 

  • Weinstock,M. &Leblond,C. P. (1974) Synthesis, migration and release of precursor collagen by odontoblasts as visualized by radioautography after3H-proline administration.J. Cell Biol. 60, 92–127.

    Article  PubMed  CAS  Google Scholar 

  • Weinstock,A. &Young,R. W. (1972) Sulfate-35S uptake by the Golgi apparatus of odontoblasts and the migration of label to the mineralization front of dentin.J. Cell Biol. 55, 276a.

    Google Scholar 

  • Williams,G. &Jackson,D. S. (1956) Two organic fixatives for acid mucopolysaccharides.Stain Technol.31, 189–91.

    PubMed  CAS  Google Scholar 

  • Wislocki,G. B. &Sognnaes,R. F. (1950) Histochemical reactions of normal teeth.Amer. J. Anat. 87, 239–76.

    Article  PubMed  CAS  Google Scholar 

  • Wislocki,G. B.,Singer,M. &Waldo,G. M. (1948) Some histochemical reaction of MPS, glycogen, lipids and other substances in teeth.Anat. Rec. 101, 487–514.

    Article  CAS  Google Scholar 

  • Yanagishita,M. &Hascall,V. C. (1992) Cell surface heparan sulfate proteoglycans.J. Biol. Chem. 267, 9451–4.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldberg, M., Takagi, M. Dentine proteoglycans: composition, ultrastructure and functions. Histochem J 25, 781–806 (1993). https://doi.org/10.1007/BF02388111

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02388111

Keywords

Navigation