Skip to main content
Log in

Methanogenesis: surprising molecules, microorganisms and ecosystems

  • Biochemistry
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Methanogenesis involves a novel set of coenzymes as one-carbon and electron carriers. Consequently, metabolic processes of methanogens deviate from those present in non-methanogenic bacteria. Methanogenic bacteria can be classified on the basis of substrate utilization. Group I (24 species) grows at the expense of hydrogen plus CO2 and/or formate and group II (7 species) uses methanol and/or acetate. Hydrogen-consuming methanogens are found as epi- or endosymbionts of anaerobic ciliates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balch, W. E., Fox, G. E., Magrum, L. J., Woese, C. R. andWolfe, R. S. 1979. Methanogens: reevaluation of a unique biological group. — Microbiol. Rev.43: 260–296.

    CAS  PubMed  Google Scholar 

  • Barker, H. A. 1956. Biological formation of methane. p. 1–27.In Bacterial Fermentations. — John Wiley & Sons, Inc., New York.

    Google Scholar 

  • Chapman-Andresen, C. 1971. Biology of the large amoebae. — Annu. Rev. Microbiol.25: 27–48.

    Article  CAS  PubMed  Google Scholar 

  • Eirich, L. D., Vogels, G. D. andWolfe, R. S. 1978. Proposed structure for coenzyme F420 fromMethanobacterium. — Biochemistry17: 4583–4593.

    Article  CAS  PubMed  Google Scholar 

  • Eker, A. P. M. 1980. Photoreactivating enzyme fromStreptomyces griseus — III. Evidence for the presence of an intrinsic chromophore. — Photochem. Photobiol.32: 593–600.

    CAS  PubMed  Google Scholar 

  • Eker, A. P. M., Pol, A., Van der Meyden, P. andVogels, G. D. 1980. Purification and properties of 8-hydroxy-5-deazaflavin derivatives fromStreptomyces griseus. — FEMS Microbiol. Lett.8: 161–165.

    CAS  Google Scholar 

  • Escalante Semerena, J. C. 1983. In vitro methanogenesis from formaldehyde. Identification of three C1 intermediates of the methanogenic pathway. — Ph. D. Thesis, University of Illinois, Urbana.

    Google Scholar 

  • Hausinger, R. P., Moura, I., Moura, J. J. G., Xavier, A. V., Santos, M. H., LeGall, J. andHoward, J. B. 1982. Amino acid sequence of a 3Fe:3S ferredoxin from the “archaebacterium”Methanosarcina barkeri (DSM 800). — J. Biol. Chem.257: 14192–14197.

    CAS  PubMed  Google Scholar 

  • Hungate, R. E., Smith, W., Bauchop, T., Yu, I. andRabinowitz, J. C. 1970. Formate as an intermediate in the bovine rumen fermentation. — J. Bacteriol.102: 389–397.

    CAS  PubMed  Google Scholar 

  • Jacobson, F. andWalsh, C. 1984. Properties of 7,8-didemethyl-8-hydroxy-5-deazaflavins relevant to redox coenzyme function in methanogen metabolism. — Biochemistry23: 979–988.

    CAS  Google Scholar 

  • Kojima, N., Fox, J. A., Hausinger, R. P., Daniels, L., Orme-Johnson, W. H. andWalsh, C. 1983. Paramagnetic centers in the nickel-containing, deazaflavin-reducing hydrogenase fromMethanobacterium thermoautotrophicum. — Proc. Natl Acad. Sci. USA80: 378–382.

    CAS  PubMed  Google Scholar 

  • Leigh, J. A. 1983. The structure of the carbon dioxide reduction factor, a novel carbon carrier inMethanobacterium thermoautotrophicum. — Ph. D. Thesis, University of Illinois, Urbana.

    Google Scholar 

  • McCormick, J. R. D. andMorton, G. O. 1982. Identity of cosynthetic factor 1 ofStreptomyces aureofaciens and fragment FO from coenzyme F420 ofMethanobacterium species. — J. Am. Chem. Soc.104: 4014–4015.

    Article  CAS  Google Scholar 

  • Nagle Jr, D. P. andWolfe, R. S. 1983. Component A of the methyl coenzyme M methylreductase system ofMethanobacterium: resolution into four components. — Proc. Natl Acad. Sci. USA80: 2151–2155.

    CAS  PubMed  Google Scholar 

  • Naraoka, T., Momoi, K., Fukasawa, K. andGoto, M. 1984. Isolation and identification of a naturally occurring 7,8-didemethyl-8-hydroxy-5-deazariboflavin derivative fromMycobacterium avium. — Biochim. Biophys. Acta797: 377–380.

    CAS  Google Scholar 

  • Pfaltz, A., Jaun, B., Fässler, A., Eschenmoser, A., Jaenchen, R., Gilles, H. H., Diekert, G. andThauer, R. K. 1982. Zur Kenntnis des Faktors F430 aus methanogenen Bakterien: Struktur des porphinoiden Ligandsystems. — Helv. Chim. Acta65: 828–865.

    Article  CAS  Google Scholar 

  • Pol, A., Van der Drift, C., Vogels, G. D., Cuppen, T. J. H. M. andLaarhoven, W. H. 1980. Comparison of coenzyme F420 fromMethanobacterium bryantii with 7- and 8-hydroxy-10-methyl-5-deazaisoalloxazine. — Biochem. Biophys. Res. Commun.92: 255–260.

    Article  CAS  PubMed  Google Scholar 

  • Schauer, N. L. andFerry, J. G. 1983. FAD requirement for the reduction of coenzyme F420 by formate dehydrogenase fromMethanobacterium formicicum. — J. Bacteriol.155: 467–472.

    CAS  PubMed  Google Scholar 

  • Stumm, C. K., Gijzen, H. J. andVogels, G. D. 1982. Association of methanogenic bacteria with ovine rumen ciliates. — Br. J. Nutr.47: 95–99.

    Article  CAS  PubMed  Google Scholar 

  • Taylor, C. D. andWolfe, R. S. 1974. Structure and methylation of coenzyme M (HSCH2CH2SO3). — J. Biol. Chem.249: 4879–4885.

    CAS  PubMed  Google Scholar 

  • Van Beelen, P., De Cock, R. M., Guijt, W., Haasnoot, C. A. G. andVogels, G. D. 1984a. Isolation and identification of 5,10-methenyl-5,6,7,8-tetrahydromethanopterin, a coenzyme involved in methanogenesis. — FEMS Microbiol. Lett.21: 159–163.

    Article  Google Scholar 

  • Van Beelen, P., Van Neck, J. W., De Cock, R. M., Vogels, G. D., Guijt, W. andHaasnoot, C. A. G. 1984b. 5,10-Methenyl-5,6,7,8-tetrahydromethanopterin, a one-carbon carrier in the process of methanogenesis. — Biochemistry23: 4448–4454.

    Google Scholar 

  • Van Bruggen, J. J. A., Stumm, C. K. andVogels, G. D. 1983. Symbiosis of methanogenic bacteria and sapropelic protozoa. — Arch. Microbiol.136: 89–95.

    Article  Google Scholar 

  • Van Bruggen, J. J. A., Zwart, K. B., Van Assema, R. M., Stumm, C. K. andVogels, G. D. 1984.Methanobacterium formicicum, an endosymbiont of the anaerobic ciliateMetopus striatus McMurrich. — Arch. Microbiol.139: 1–7.

    Article  Google Scholar 

  • Van der Meijden, P., Heythuysen, H. J., Sliepenbeek, H. T., Houwen, F. P., Van der Drift, C. andVogels, G. D. 1983. Activation and inactivation of methanol: 2-mercaptoethanesulfonic acid methyltransferase fromMethanosarcina barkeri. — J. Bacteriol.153: 6–11.

    PubMed  Google Scholar 

  • Vogels, G. D., Hoppe, W. F. andStumm, C. K. 1980. Association of methanogenic bacteria with rumen ciliates. — Appl. Environ. Microbiol.40: 608–612.

    CAS  PubMed  Google Scholar 

  • Whatley, J. M. 1976. Bacteria and nuclei inPelomyxa palustris: comments on the theory of serial endosymbiosis. — New Phytol.76: 111–120.

    Google Scholar 

  • Zhilina, T. N. 1983. A new obligate halophilic methane-producing bacterium. — Mikrobiologiya52: 375–382.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vogels, G.D., van der Drift, C., Stumm, C.K. et al. Methanogenesis: surprising molecules, microorganisms and ecosystems. Antonie van Leeuwenhoek 50, 557–567 (1984). https://doi.org/10.1007/BF02386226

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02386226

Keywords

Navigation