Skip to main content
Log in

Alloy negative electrodes for lithium batteries formed in-situ from oxides

  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Fuji Photo Film Co. recently announced the development of lithium batteries employing oxide negative electrodes. Under near-equilibrium conditions these oxides are converted to lithium alloys during the first charging cycle. Thereafter, the properties should be essentially those of the resulting binary lithium alloys.

The basic principles involved in the use of alloys as negative electrodes, as well as the conversion of oxides to alloys, are presented. Available data on the behavior of a number of lithium alloys and binary oxides as negative electrodes in lithium systems are also included. The lithiumtin system is discussed in some detail as it is a particularly relevant example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

12. References

  1. Fujifilm, Internet: http://www.fujifilm.co.jp/eng/news_e/nr079.html, (1996).

  2. N.P. Yao, L.A. Heredy and R.C. Saunders, J. Electrochem. Soc.118, 1039 (1971).

    CAS  Google Scholar 

  3. E.C. Gay, et al., J. Electrochem. Soc.123, 1591 (1976).

    CAS  Google Scholar 

  4. S.C. Lai, J. Electrochem. Soc.123, 1196 (1976).

    CAS  Google Scholar 

  5. R.A. Sharma and R.N. Seefurth, J. Electrochem Soc.123, 1763 (1976).

    CAS  Google Scholar 

  6. R.N. Seefurth and R.A. Sharma, J. Electrochem. Soc.124, 1207 (1977).

    CAS  Google Scholar 

  7. H. Ogawa, inProceedings of 2nd International Meeting on Lithium Batteries, Elsevier Sequoia (1984), p. 259.

  8. R. Yazami and P. Touzain, J. Power Sources9, 365 (1983).

    CAS  Google Scholar 

  9. I.A. Courtney and J.R. Dahn, submitted for publication in J. Electrochem. Soc., (1997).

  10. W. Weppner and R.A. Huggins, inProc. of the Symposium on Electrode Materials and Processes for Energy Conversion and Storage, J.D.E. McIntyre, S. Srinivasan and F.G. Will, Eds., Electrochem. Society (1977), p. 833.

  11. W. Weppner and R.A. Huggins, Z. Phys. Chem. N.F.108, 105 (1977).

    CAS  Google Scholar 

  12. W. Weppner and R.A. Huggins, J. Electrochem. Soc.125, 7 (1978).

    CAS  Google Scholar 

  13. C.M. Luedecke, J.P. Doench and R.A. Huggins, inProc. of Symp. on High Temperature Materials Chemistry, Z. A. Munir and D. Cubicciotti, Eds., Electrochem. Soc. (1983), p. 105.

  14. J.P. Doench and R.A. Huggins, inProc. of Symp. on High Temperature Materials Chemistry, Z.A. Munir and D. Cubicciotti, Eds., Electrochem. Soc. (1983), p. 115.

  15. A. Anani and R.A. Huggins, inProc. of Symp. on Primary and Secondary Ambient Temperature Lithium Batteries, J-P. Gabano, Z. Takehara and P. Bro, Eds., Electrochem. Soc. (1988), p. 635.

  16. A. Anani and R.A. Huggins, J. Power Sources38, 351 (1992).

    CAS  Google Scholar 

  17. R.A. Huggins, inFast Ion Transport in Solids, P. Vashishta, J.N. Mundy and G.K. Shenoy, Eds., North-Holland (1979), p. 53.

  18. C.J. Wen, Ph.D. Dissertation, Stanford University, (1980).

  19. I.D. Raistrick and R.A. Huggins, Mat. Res. Bull.18, 337 (1983).

    Article  CAS  Google Scholar 

  20. I.D. Raistrick, A.J. Mark and R.A. Huggins, Solid State Ionics5, 351 (1981).

    Article  CAS  Google Scholar 

  21. W. Weppner and R.A. Huggins, J. Electrochem. Soc.124, 1569 (1977).

    CAS  Google Scholar 

  22. W. Weppner and R.A. Huggins, inAnnual Review of Materials Science, R. A. Huggins, Ed., Annual Reviews, Inc. (1978), p. 269.

  23. C.J. Wen et al., International Metals Reviews5, 253 (1981).

    Google Scholar 

  24. C.J. Wen et al., J. Electrochem. Soc.126, 2258 (1979).

    CAS  Google Scholar 

  25. C.J. Wen et al., Met. Trans. B11B, 131 (1980).

    CAS  Google Scholar 

  26. C.J. Wen and R.A. Huggins, J. Solid State Chem.37, 271 (1981).

    CAS  Google Scholar 

  27. C.J. Wen and R.A. Huggins, J. Electrochem. Soc.128, 1181 (1981).

    CAS  Google Scholar 

  28. C. J. Wen and R.A. Huggins, J. Solid State Chem.35, 376 (1980).

    Article  CAS  Google Scholar 

  29. J.P. Doench and R.A. Huggins, J. Electrochem. Soc.129, 341 (1982).

    Google Scholar 

  30. J. Wang, I.D. Raistrick and R.A. Huggins, J. Electrochem. Soc.133, 457 (1986).

    CAS  Google Scholar 

  31. J. Wang, P. King and R.A. Huggins, Solid State Ionics20, 185 (1986).

    Article  CAS  Google Scholar 

  32. A. Anani, S. Crouch-Baker and R.A. Huggins, inProc. Symp. on Lithium Batteries, ed. by A.N. Dey, Electrochem. Soc. (1987), p. 365

  33. B.A. Boukamp, G.C. Lesh and R.A. Huggins, J. Electrochem. Soc.128, 725 (1981).

    CAS  Google Scholar 

  34. B.A. Boukamp, G.C. Lesh and R.A. Huggins, inProc. Symp. on Lithium Batteries, H. V. Venkatasetty, Ed., Electrochem. Soc. (1981), p. 467.

  35. R.A. Huggins and B.A. Boukamp, U.S. Patent 4,436,796 (1984).

    Google Scholar 

  36. A. Anani, S. Crouch-Baker and R.A. Huggins, inProc. of Symp. on Lithium Batteries, A. N. Dey, Ed., Electrochem. Soc. (1987), p. 382.

  37. A. Anani, S. Crouch-Baker and R.A. Huggins, J. Electrochem. Soc.135, 2103 (1988).

    CAS  Google Scholar 

  38. C. J. Wen and R.A. Huggins, Mat. Res. Bull.15, 1225 (1980).

    Article  CAS  Google Scholar 

  39. M.L. Saboungi, et al., J. Electrochem. Soc.126, 322 (1979).

    Google Scholar 

  40. C.J. Wen and R.A. Huggins, J. Electrochem. Soc.128, 1636 (1981).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huggins, R.A. Alloy negative electrodes for lithium batteries formed in-situ from oxides. Ionics 3, 245–255 (1997). https://doi.org/10.1007/BF02375624

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02375624

Keywords

Navigation