Skip to main content
Log in

Renal function and insulin sensitivity during simvastatin treatment in Type 2 (non-insulin-dependent) diabetic patients with microalbuminuria

  • Published:
Diabetologia Aims and scope Submit manuscript

Summary

The effect of simvastatin (10–20 mg/day) on kidney function, urinary albumin excretion rate and insulin sensitivity was evaluated in 18 Type 2 (non-insulin-dependent) diabetic patients with microalbuminuria and moderate hypercholesterolaemia (total cholesterol ≥5.5 mmol·l−1). In a double-blind, randomized and placebo-controlled design treatment with simvastatin (n=8) for 36 weeks significantly reduced total cholesterol (6.7±0.3 vs 5.1 mmol·l−1 (p<0.01)), LDL-cholesterol (4.4±0.3 vs 2.9±0.2 mmol·l−1 (p<0.001)) and apolipoprotein B (1.05±0.04 vs 0.77±0.02 mmol·l−1 (p<0.01)) levels as compared to placebo (n=10). Both glomerular filtration rate (mean±SEM) (simvastatin: 96.6±8.0 vs 96.0±5.7 ml·min−1·1.73 m−2, placebo: 97.1±6.7 vs 88.8±6.0 ml·min−1·1.73 m−2) (NS) and urinary albumin excretion rate (geometric mean x/÷ antilog SEM) (simvastatin: 18.4x/÷1.3vs 16.2 x/÷1.2 μg·min−1, placebo 33.1 x/÷ 1.3 vs 42.7 x/÷ 1.3 μg·min−1)(NS) were unchanged during the study. A euglycaemic hyperinsulinaemic clamp was performed at baseline and after 18 weeks in seven simvastatin-and nine placebo-treated patients. Isotopically determined basal and insulin-stimulated glucose disposal was similarly reduced before and during therapy in both the simvastatin (2.0±0.1 vs 1.9±0.1 (NS) and 3.1±0.6 vs 3.1±0.7 mg·kg−1·min−1 (NS)) and the placebo group (1.9±0.1 vs 1.8±0.1 (NS) and 4.1±0.6 vs 3.8±0.2 mg·kg−1·min−1 (NS)). No different was observed in glucose storage or glucose and lipid oxidation before and after treatment. Further, the suppression of hepatic glucose production during hyperinsulinaemia was not influenced by simvastatin (−0.7±0.8 vs −0.7±0.5 mg·kg−1·min−1 (NS)). In conclusion, despite marked improvement in the dyslipidaemia simvastatin had no impact on kidney function or urinary albumin excretion rate and did not reduce insulin resistance in these microalbuminuric and moderately hypercholesterolaemic Type 2 diabetic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Panzram G (1987) Mortality and survival in type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 30: 123–131

    Article  CAS  PubMed  Google Scholar 

  2. Jarrett RJ, Viberti GC, Argyropoulos A, Hill RD, Mahmud U, Murrells TJ (1984) Microalbuminuria predicts mortality in non-insulin-dependent diabetics. Diabetic Med 1: 17–19

    CAS  PubMed  Google Scholar 

  3. Mogensen CE (1984) Microalbuminuria predicts clinical proteinuria and early mortality in maturity-onset diabetes. N Engl J Med 310:356–360

    CAS  PubMed  Google Scholar 

  4. Schmitz A, Vaeth M (1988) Microalbuminuria: a major risk factor in non-insulin-dependent diabetes. A 10-year follow-up study of 503 patients. Diabetic Med 5: 126–134

    CAS  PubMed  Google Scholar 

  5. Reaven GM (1988) Role of insulin resistance in human disease. Diabetes 37: 1595–1607

    CAS  PubMed  Google Scholar 

  6. Zavaroni I, Bonora E, Pagliara M et al. (1989) Risk factors for coronary artery disease in healthy persons with hyperinsulinemia and normal glucose tolerance. N Engl J Med 320: 702–706

    CAS  PubMed  Google Scholar 

  7. Nosadini R, Solini A, Sambataro M et al. (1992) Relationships among insulin resistance, hypertension and microalbuminuria in non insulin dependent diabetes. Role of cell ion handling. Diabetes41 [Suppl]: 62A, (Abstract)

    Google Scholar 

  8. Mulec H, Johnson SAa, Björck S (1990) Relation between serum cholesterol and diabetic nephropathy. Lancet 335: 1537–1538

    Article  CAS  PubMed  Google Scholar 

  9. Pollare T, Lithell H, Selinus I, Berne C (1989) Sensitivity to insulin during treatment with atenolol and metoprolol: a randomised, double blind study of effects on carbohydrate and lipoprotein metabolism in hypertensive patients. BMJ 298: 1152–1157

    CAS  PubMed  Google Scholar 

  10. Pollare, T, Lithell H, Berne C (1989) A comparison of the effect of hydrochlorothiazide and captopril on glucose and lipid metabolism in patients with hypertension. N Engl J Med 321: 868–873

    CAS  PubMed  Google Scholar 

  11. Hessov I (1978) Detecting deficient energy and protein intake in hospital patients: a simple record method. BMJ 1: 1667–1668

    CAS  PubMed  Google Scholar 

  12. Haraldsdóttir J, Holm L, From V, Nielsen LS (1985) Estimering af portionsstørrelser ved hjælp af modeller. Näringsforskning 29:59–65

    Google Scholar 

  13. Møller A (1989) Levnedsmiddeltabeller. Levnedsmiddelstyrelsen, Copenhagen

    Google Scholar 

  14. Bröchner-Mortensen J (1972) A simple method for the determination of glomerular filtration rate. Scand J Clin Lab Invest 30: 271–274

    PubMed  Google Scholar 

  15. Christensen CK, Ørskov C (1984) Rapid screening PEG immunoassay for quantification of pathological microalbuminuria. Diabetic Nephrol 3: 92–94

    Google Scholar 

  16. Jeppsson JO, Jerntorp P, Sundkvist G, Englund H, Nylund V (1986) Measurement of hemoglobin A1c by a new liquid-chromatographic assay: methodology, clinical utility and relation to glucose tolerance evaluated. Clin Chem 32: 1867–1872

    CAS  PubMed  Google Scholar 

  17. Boye N, Ingerslev J (1988) Rapid and inexpensive microdetermination of serum fructosamine results in diabetics, uraemics, diabetics with uraemia and health subjects. Scand J Clin Lab Invest 48: 779–783

    CAS  PubMed  Google Scholar 

  18. Friedewald WT, Levy RI, Frederikson DS (1972) Estimation of the concentration of low density lipoprotein cholesterol in plasma without use of the preparative ultracentrifuge. Clin Chem 18: 499–502

    CAS  PubMed  Google Scholar 

  19. DeBodo R, Steele R, Altszuler N, Dunn A, Bishop J (1963) On the hormonal regulation of carbohydrate metabolism: studies with14C-glucose. Recent Progr Horm Res 19: 445–488

    CAS  PubMed  Google Scholar 

  20. Yki-Järvinen H, Consoli A, Nurjhan N, Young AA, Gerich JE (1989) Mechanism for underestimation of isotopically determined glucose disposal. Diabetes 38: 744–751

    PubMed  Google Scholar 

  21. Ferrannini E, Smith JD, Cobelli C, Toffolo G, Pilo A, DeFronzo RA (1985) Effect of insulin on the distribution and disposition of glucose in man. J Clin Invest 76:357–364

    CAS  PubMed  Google Scholar 

  22. Cobelli C, Mari A, Ferrannini E (1987) The non-steady state problem: error analysis of Steele's model and new developments for glucose kinetics. Am J Physiol 252: E679-E689

    CAS  PubMed  Google Scholar 

  23. Bergman RN, Finegood DT, Ader M (1985) Assessment of insulin sensitivity in vivo. Endocrine Rev 6: 45–86

    CAS  Google Scholar 

  24. Ørskov H, Thomsen AG, Yde H (1968) Wick-chromatography for rapid and reliable immunoassay of insulin, glucagon and growth hormone. Nature 219: 193–195

    PubMed  Google Scholar 

  25. Ho RJ, Meng HC (1969) A simple and ultrasensitive method for determination of free fatty acids by radiochemical assay. Ann Biochem 31: 426–430

    Article  CAS  Google Scholar 

  26. Lloyd B, Burrin J, Smythe P, Alberti KGMM (1978) A simple automated fluorimetric assay for blood glucose, lactate, pyruvate, alanine, glycerol and 3-hydroxybutyrate. Clin Chem 24: 1724–1729

    CAS  PubMed  Google Scholar 

  27. Frayn KN (1983) Calculation of substrate oxidation rates in vivo from gaseous exchange. J Appl Physiol 55: 628–634

    CAS  PubMed  Google Scholar 

  28. Lipid Research Clinic Program (1984) The Lipid Research Clinic Coronary Primary Prevention Trial results. II. JAMA 251: 365–374

    Google Scholar 

  29. Frick MH, Elo O, Haapa K (1987) Helsinki Heart Study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia: safety of treatment, changes in risk factors, and incidence of coronary heart disease. N Engl J Med 317: 1237–1245

    CAS  PubMed  Google Scholar 

  30. Brown G, Albers JJ, Fisher LD etal. (1990) Regression of coronary artery disease as a result of intensive lipid-lowering therapy in men with high levels of apolipoprotein B. N Engl J Med 323: 1289–1298

    CAS  PubMed  Google Scholar 

  31. Blankenhorn DH, Nessim SA, Johnson RL, Sanmarco ME, Azen SP, Cashin-Hemphill L (1987) Beneficial effects of combined colestipol-niacin therapy on coronary atherosclerosis and coronary venous bypass grafts. JAMA 257: 3233–3240

    Article  CAS  PubMed  Google Scholar 

  32. Consensus Development Conference (1985) Lowering blood cholesterol to prevent heart disease. JAMA 253: 2080–2086

    Google Scholar 

  33. American Diabetes Association (1989) Consensus statement. Role of cardiovascular risk factors in prevention and treatment of macrovascular disease in diabetes. Diabetes Care 12: 573–579

    Google Scholar 

  34. Garg A, Grundy SM (1988) Lovastatin for lowering cholesterol levels in non-insulin-dependent diabetes mellitus. N Engl J Med 318: 81–86

    CAS  PubMed  Google Scholar 

  35. Grundy SM (1988) HMG-CoA reductase inhibitors for treatment of hypercholesterolaemia. N Engl J Med 319: 24–33

    CAS  PubMed  Google Scholar 

  36. Martin P, Hampton KK, Walton C, Tindall H, Davies JA (1990) Microproteinuria in type 2 diabetes mellitus from diagnosis. Diabetic Med 7: 315–318

    CAS  PubMed  Google Scholar 

  37. Patrick AW, Leslie PJ, Clarke BF, Frier BM (1990) The natural history and associations of microalbuminuria in type 2 diabetes during the first year after diagnosis. Diabetic Med 7: 902–908

    CAS  PubMed  Google Scholar 

  38. Mogensen CE, Fine Olivarius N de (1991) Renal involvement in newly diagnosed middle-aged and elderly mainly Type II diabetics. Diabetologia 34 [Suppl 2]: A143 (Abstract)

    Google Scholar 

  39. Pyörälä K, Laakso N, Uusitupa M (1987) Diabetes and atherosclerosis: an epidemiologic view. Diabetes Metab Rev 3: 463–524

    PubMed  Google Scholar 

  40. Niskanen L, Uusitupa M, Sarlund H et al. (1990) Microalbuminuria predicts the development of serum lipoprotein abnormalities favouring atherogenesis in newly diagnosed type 2 (non-insulin-dependent) diabetic patients. Diabetologia 33: 237–243

    Article  CAS  PubMed  Google Scholar 

  41. Nielsen S, Schmitz A, Mogensen CE (1991) Rate of progression of nephropathy in normo- and microalbuminuric type 2 diabetic patients. Diabetologia 34 [Suppl 2]: A144 (Abstract)

    Google Scholar 

  42. Mogensen CE, Damsgaard EM, Frøland A et al. (1992) Reduced glomerular filtration rate and cardiovascular damage in diabetes: a key role for abnormal albuminuria. Acta Diabetologica 29: 201–213

    Article  Google Scholar 

  43. Gall M-A, Nielsen FS, Smidt UM, Parving HH (1992) The course of kidney function in type 2 (non-insulin-dependent) diabetic patients with diabetic nephropathy. Diabetologia35 [Suppl 1]: A147 (Abstract)

    Google Scholar 

  44. Baba T, Murabayashi S, Tomiyama T, Takebe K (1990) Uncontrolled hypertension is associated with a rapid progression of nephropathy in type 2 diabetic patients with proteinuria and preserved renal function. Tohoku J Exp Med 161: 311–318

    CAS  PubMed  Google Scholar 

  45. Moorhead JF, Chan MK, El-Nahas M, Varghese Z (1982) Lipid nephrotoxicity in chronic progressive glomerular and tubulo-interstitial disease. Lancet II: 1309–1311

    Google Scholar 

  46. Kasiske BL, O'Donnell MP, Schmitz PG, Kim Y, Keane WF (1990) Renal injury of diet-induced hypercholesterolemia in rats. Kidney Int 37: 880–891

    CAS  PubMed  Google Scholar 

  47. Al-Shebeb T, Frolich J, Magil AB (1988) Glomerular disease in hypercholesterolemic guinea pigs: a pathogenetic study. Kidney Int 33: 498–507

    CAS  PubMed  Google Scholar 

  48. Diamond JR, Karnovsky MJ (1987) Exacerbation of chronic aminonucleoside nephrosis by dietary cholesterol supplementation. Kidney Int 32: 671–677

    CAS  PubMed  Google Scholar 

  49. Heuck CC, Liersch M, Ritz R, Stegmeier K, Wirth A, Mehls O (1978) Hyperlipoproteinemia in experimental chronic renal insuffiency in the rat. Kidney Int 14: 142–150

    CAS  PubMed  Google Scholar 

  50. Shimamura T, Morrison AB (1975) A progressive glomerulosclerosis occurring in partial five-sixth nephrectomized rats. Am J Pathol 79: 95–106

    CAS  PubMed  Google Scholar 

  51. Kasiske BL, O'Donnell MP, Garvis WJ, Keane WF (1988) Pharmacologic treatment of hyperlipidemia reduces glomerular injury in rat 5/6 nephrectomy model of chronic renal failure. Circ Res 62: 367–374

    CAS  PubMed  Google Scholar 

  52. Kasiske BL, Cleary MP, O'Donnell MP, Keane WF (1985) Effects of genetic obesity on renal structure and function in the Zucker rat. J Lab Clin Med 106: 598–604

    CAS  PubMed  Google Scholar 

  53. O'Donnell MP, Kasiske BL, Cleary MP, Keane WF (1985) Effects of genetic obesity on renal structure and function in the Zucker rat. II. Micropuncture studies. J Lab Clin Med 106: 605–610

    PubMed  Google Scholar 

  54. Kasiske BL, O'Donnell MP, Cleary MP, Keane WF (1988) Treatment of hyperlipidemia reduces glomerula injury in obese Zucker rats. Kidney Int 33: 667–672

    CAS  PubMed  Google Scholar 

  55. Rabelink AJ, Hené RJ, Erkelens DW, Joles JA, Koomans HA (1990) Partial remission of nephrotic syndrome in patients on long term simvastatin. Lancet 335: 1045–1046

    Article  CAS  PubMed  Google Scholar 

  56. Hommel E, Andersen P, Gall M-A et al. (1992) Plasma lipoproteins and renal function during simvastatin treatment in diabetic nephropathy. Diabetologia 35: 447–451

    Article  CAS  PubMed  Google Scholar 

  57. Paolisso G, Sgambato S, De Riu S et al. (1991) Simvastatin reduces plasma lipid levels and improves insulin action in elderly, non-insulin dependent diabetics. Eur J Clin Pharmacol 40: 27–31

    Article  CAS  PubMed  Google Scholar 

  58. Randle PJ, Garland PB, Hales CN, Newsholme EA (1963) The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet I: 785–789

    Google Scholar 

  59. Bevilacqua S, Buzzigoli G, Bonadonna R et al. (1990) Operation of Randle's cycle in patients with NIDDM. Diabetes 39: 383–389

    CAS  PubMed  Google Scholar 

  60. Groop LC, Saloranta C, Shank M, Bonadonna RC, Ferrannini E, DeFronzo RA (1991) The role of free fatty acid metabolism in the pathogenesis of insulin resistance in obesity and noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab 72: 96–107

    CAS  PubMed  Google Scholar 

  61. Ferrannini E, Barrett EJ, Bevilacqua S, DeFronzo RA (1983) Effect of fatty acids on glucose production and utilization in man. J Clin Invest 72: 1737–1747

    CAS  PubMed  Google Scholar 

  62. Reaven GM, Hoffman BB (1987) A role for insulin in the aetiology and course of hypertension? Lancet II: 435–437

    Google Scholar 

  63. DeFronzo R (1988) The triumvirate: β-cell, muscle, liver. A collusion responsible for NIDDM. Diabetes 37: 667–687

    CAS  PubMed  Google Scholar 

  64. Vaag A, Skött P, Damsbo P, Gall MA, Richter EA, Beck Nielsen H (1991) Effect of the antilipolytic nicotinic acid analogue acipimox on whole-body and skeletal muscle glucose metabolism in patients with non-insulin-dependent diabetes mellitus. J Clin Invest 88: 1282–1290

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nielsen, S., Schmitz, O., Møller, N. et al. Renal function and insulin sensitivity during simvastatin treatment in Type 2 (non-insulin-dependent) diabetic patients with microalbuminuria. Diabetologia 36, 1079–1086 (1993). https://doi.org/10.1007/BF02374502

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02374502

Key words

Navigation