Skip to main content
Log in

Insulin excess counteracts the effects of HDL on intracellular sterol accumulation in cultured human skin fibroblasts

  • Originals
  • Published:
Diabetologia Aims and scope Submit manuscript

Summary

Both Type 1 (insulin-dependent) and Type 2 (non-insulin-dependent) diabetic individuals are at increased risk of developing ischaemic heart disease. Insulin excess, present in both diabetic groups, may play an important pathophysiologic role in accelerating the atherogenic process. In this study, cultured human skin fibroblasts were incubated with varying concentrations of insulin to test the role of insulin on cell cholesterol homeostasis and on HDL3-mediated removal of excess cholesterol from cells. Insulin excess (1-2-100 nmol/l) resulted in a significant dose-dependent reduction in HDL3-mediated cholesterol efflux from the intracellular unesterified cholesterol pool of cultured human skin fibroblasts. Similar insulin concentrations resulted in impaired HDL-mediated cholesterol efflux from the cell membrane but had no effect on non-HDL-mediated efflux. The effect of insulin on cholesterol esterification and biosynthesis was assessed by14C-oleate labelling. The addition of HDL3 (50 μg) resulted in a significant decrease in14C-labelled cholesterol ester, reflecting a decrease in intracellular unesterified cholesterol, which was partially reversed by the addition of insulin. Insulin had no effect on the incorporation of14C-oleate into unesterified cholesterol. During simultaneous incubation of fibroblasts with LDL and HDL, insulin resulted in an increase in cholesterol esterification and inhibited ability of HDL to promote the decrease in esterification. Thus, we have shown that insulin exess counteracts the beneficial effects of HDL that involve removal of cellular cholesterol and may in part promote atherogenesis by this mechanism

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Garcia MJ, McNamara PM, Gordon T, Kannell WB (1974) Morbidity and mortality in diabetics in the Framingham population: sixteen year follow-up study. Diabetes 23: 105–111

    CAS  PubMed  Google Scholar 

  2. Chait A, Bierman EL, Brunzell JD (1985) Diabetic macroangiopathy. In: Alberti KGMM, Krall LP (eds) The diabetes annual I. Elsevier Science Publishers, Amsterdam, pp 323–348

    Google Scholar 

  3. Reaven GM (1987) Non-insulin dependent diabetes mellitus, abnormal lipoprotein metabolism, and atherosclerosis. Metabolism 36 [Suppl 1]: 1–18

    CAS  PubMed  Google Scholar 

  4. Colwell JA, Lopes-Virella MF, Halushka PV (1981) Pathogenesis of atherosclerosis in diabetes mellitus. Diabetes Care 4: 121–133

    CAS  PubMed  Google Scholar 

  5. Biesbroeck RC, Albers JJ, Wahl PW, Weinberg CR, Bassett ML, Bierman EL (1982) Abnormal composition of high density lipoproteins in non-insulin-dependent diabetes. Diabetes 31: 126–131

    CAS  PubMed  Google Scholar 

  6. Bagdade JD, Subbaiah PV (1989) Whole-plasma and high-density lipoprotein subfraction surface lipid composition in IDDM men. Diabetes 38: 1226–1230

    CAS  PubMed  Google Scholar 

  7. Glomset JA (1968) The plasma lecithin: cholesterol acyltransferase reaction. J Lipid Res 9: 155

    CAS  PubMed  Google Scholar 

  8. Rasmussen SM, Heding LG, Parbst E (1975) Serum IRI in insulin treated diabetes during a 24-hour period. Diabetologia 11: 151–158

    CAS  PubMed  Google Scholar 

  9. Werther GA, Jenkins PA, Turner RC, Baum JD (1980) Twenty-four hour metabolic profiles in diabetic children receiving insulin injections once or twice daily. BMJ 281: 414–418

    CAS  PubMed  Google Scholar 

  10. Modan M, Halkin H, Lusky A, Segal P, Fuchs Z, Chetrit A (1988) Hyperinsulinemia is characterized by jointly disturbed plasma VLDL, LDL, and HDL levels. Arteriosclerosis 8: 227–236

    CAS  PubMed  Google Scholar 

  11. Zavaroni I, Bonora E, Pagliara M et al. (1989) Risk factors for coronary artery disease in healthy persons with hyperinsulinemia and normal glucose tolerance. N Engl J Med 320: 702–706

    CAS  PubMed  Google Scholar 

  12. Pyörälä K, Savolainen E, Kaukola S, Haapakoski J (1985) Plasma insulin as coronary heart disease risk factor: relationship to other risk factors and predictive value during 9 1/2 year follow-up on the Helsinki Policemen Study Population. Acta Med Scand 701: 38–52

    Google Scholar 

  13. Eschwege E, Ducimetiere P, Thibult N, Richard J-L, Claude J-R, Rosselin GE (1985) Coronary heart disease mortality in relation with diabetes, blood glucose and plasma insulin levels. The Paris prospective study, ten years later. Horm Metab Res 15: 41–45

    CAS  Google Scholar 

  14. Bierman EL (1992) Atherogenesis in diabetes. Arterioscler Thromb 12: 647–659

    CAS  PubMed  Google Scholar 

  15. Laws A, King AC, Haskell WL, Reaven GM (1991) Relation of fasting plasma insulin concentration to high density lipoprotein cholesterol and triglyceride concentrations in men. Arterioscler Thromb 11: 1636–1642

    CAS  PubMed  Google Scholar 

  16. Welborn TA, Wearne K (1979) Coronary heart disease incidence and cardiovascular mortality in Busselton with reference to glucose and insulin concentration. Diabetes Care 2: 154–160

    CAS  PubMed  Google Scholar 

  17. Bergstrom RW, Leonetti DL, Newell-Morris LL, Shuman WP, Wahl PW, Fujimoto WY (1990) Association of plasma triglyceride and C-peptide with coronary heart disease in Japanese-American men with a high prevalence of glucose intolerance. Diabetologia 33: 489–496

    Article  CAS  PubMed  Google Scholar 

  18. Ronnemaa T, Laakso M, Pyörälä K, Puukka P (1991) High fasting plasma insulin is an indicator of coronary heart disease in non-insulin dependent diabetic patients and non-diabetis subjects Arterioscler Thromb 11: 80–90

    CAS  PubMed  Google Scholar 

  19. Brinton EA, Oram JF, Chen C-H, Albers JJ, Bierman EL (1986) Binding of high density lipoprotein to cultured fibroblasts after chemical alteration of apoprotein amino acid residues. J Biol Chem 261: 495–503

    CAS  PubMed  Google Scholar 

  20. Chung BH, Wilkinson T, Geer JC, Segrest JP (1980) Preparative and quantitative isolation of plasma lipoproteins: rapid, single discontinuous density gradient ultracentrifugation in a vertical rotor. J Lipid Res 21: 284–291

    CAS  PubMed  Google Scholar 

  21. Slotte JP, Oram JF, Bierman EL (1987) Binding of high density lipoprotein to cell receptors promotes translocation of cholesterol from intracellular membranes to the cell surface. J Biol Chem 262: 12904–12907

    CAS  PubMed  Google Scholar 

  22. Aviram M, Bierman EL, Oram JF (1989) High density lipoprotein stimulates sterol translocation between intracellular and plasma membrane pools in human monocyte-derived macrophages. J Lipid Res 30: 65–76

    CAS  PubMed  Google Scholar 

  23. Oram JF, Mendez AJ, Slotte JP, Johnson TF (1991) High density lipoprotein apolipoproteins mediate removal of sterol from intracellular pools but not from plasma membranes of cholesterolloaded fibroblasts. Arterioscler Thromb 11: 403–414

    CAS  PubMed  Google Scholar 

  24. Oram JF (1986) Receptor-mediated transport of cholesterol between cultured cells and high density lipoproteins. Methods Enzymol 129: 645–659

    CAS  PubMed  Google Scholar 

  25. Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues J Biol Chem 226: 497–509

    CAS  PubMed  Google Scholar 

  26. Oram JF, Brinton EA, Bierman EL (1983) Regulation of HDL receptor activity in cultured human skin fibroblasts and human arterial smooth muscle cells. J Clin Invest 72: 1611–1621

    CAS  PubMed  Google Scholar 

  27. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275

    CAS  PubMed  Google Scholar 

  28. Chait A, Bierman EL, Albers JJ (1979) Low density lipoprotein receptor activity in cultured human skin fibroblasts: mechanism of insulin-induced stimulation. J Clin Invest 64: 1309

    CAS  PubMed  Google Scholar 

  29. Oppenheimer MJ, Sundquist K, Bierman EL (1989) Downregulation of high density lipoprotein receptor activity in human fibroblasts by insulin and IGF-1. Diabectes 38: 117–122

    CAS  Google Scholar 

  30. Stout RW, Vallance Owen J (1969) Insulin and atheroma. Lancet 1: 1078–1080

    CAS  PubMed  Google Scholar 

  31. Stout RW (1977) The effect of insulin and glucose onsterol synthesis in cultured rat arterial smooth muscle cells. Atherosclerosis 27: 271–278

    CAS  PubMed  Google Scholar 

  32. Young JR, Stout RW (1987) Effects of insulin and glucose in the cells of the arterial wall: interaction of insulin with dibutyryl cyclic AMP and low density lipoprotein on arterial cells. Diabete Metab 13: 301–306

    CAS  PubMed  Google Scholar 

  33. Bathena SJ, Avigan J, Schreiner ME (1974) Effect of insulin on sterol and fatty acid synthesis and hydroxymethylglutaryl CoA reductase activity in mammalian cells grown in culture. Proc Natl Acad Sci USA 71: 2174–2178

    Google Scholar 

  34. Oppenheimer MJ, Oram JF, Bierman EL (1987) Downregulation of high density lipoprotein receptor activity of cultured fibroblasts by platelet-derived growth factor. Arteriosclerosis 7: 325–332

    CAS  PubMed  Google Scholar 

  35. Far'ias RN, Vinals AL, Morero RD (1986) Fusion of negatively charged phospholipid vesicles by insulin: relationship with lipid fluidity. J Biol Chem 261: 15508–15512

    Google Scholar 

  36. Laakso M, Pyörälä K, Voutilainen E, Marniemi J (1987) Plasma insulin and serum lipids and lipoproteins in middle-aged non-insulin dependent diabetic and non-diabetic subjects. Am J Epidemiol 125: 611–621

    CAS  PubMed  Google Scholar 

  37. Jiao S, Kameda K, Mutsuzuwa Y, Kubo M, Nonaka K, Tarui SC (1986) Influence of endogenous hyperinsulinism on HDL2 level in impaired glucose tolerance. Atherosclerosis 60: 279–286

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brazg, R.L., Bierman, E.L. Insulin excess counteracts the effects of HDL on intracellular sterol accumulation in cultured human skin fibroblasts. Diabetologia 36, 942–947 (1993). https://doi.org/10.1007/BF02374477

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02374477

Key words

Navigation