Skip to main content

Advertisement

Log in

The influence of high-density lipoprotein (HDL) and HDL subfractions on insulin secretion and cholesterol efflux in pancreatic derived β-cells

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Background

High-density lipoprotein (HDL) is considered a complex plasma-circulating particle with subfractions that vary in function, size, and chemical composition. We sought to test the effects of HDL, and HDL subfractions on insulin secretion and cholesterol efflux in the β-cell line MIN-6.

Methods

We used total HDL and HDL subfractions 2a, 2b, 3a, 3b, and 3c, isolated from human plasma, to test insulin secretion under different glucose concentrations as well as insulin content and cholesterol efflux in the insulinoma MIN-6 cell line.

Results

Incubation of MIN-6 cells with low glucose and total HDL increased insulin release two-fold. Meanwhile, when high glucose and HDL were used, insulin release increased more than five times. HDL subfractions 2a, 2b, 3a, 3b, and 3c elicited higher insulin secretion and cholesterol efflux than their respective controls, at both low and high glucose concentrations. The insulin content of the MIN-6 cells incubated with low glucose and any of the five HDL subclasses had a modest reduction compared with their controls. However, there were no statistically significant differences between each HDL subfraction on their capacity of eliciting insulin secretion, insulin content, or cholesterol efflux.

Conclusions

HDL can trigger insulin secretion under low, normal, and high glucose conditions. We found that all HDL subfractions exhibit very similar capacity to increase insulin secretion and cholesterol efflux. This is the first report demonstrating that HDL subfractions act both as insulin secretagogues (under low glucose) and insulin secretion enhancers (under high glucose) in the MIN-6 cell line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

The data will be shared by direct request to the corresponding author.

References

  1. Wajchenberg BL (2007) beta-cell failure in diabetes and preservation by clinical treatment. Endocr Rev 28(2):187–218

    Article  CAS  Google Scholar 

  2. Standl E (2007) The importance of beta-cell management in type 2 diabetes. Int J Clin Pract Suppl 153:10–19

    Article  CAS  Google Scholar 

  3. Noushmehr H, D’Amico E, Farilla L et al (2005) Fatty acid translocase (FAT/CD36) is localized on insulin-containing granules in human pancreatic beta-cells and mediates fatty acid effects on insulin secretion. Diabetes 54(2):472–481

    Article  CAS  Google Scholar 

  4. Langhi C, Cariou B (2010) Cholesterol metabolism and beta-cell function. Med Sci (Paris) 26(4):385–390

    Article  Google Scholar 

  5. Drew BG, Duffy SJ, Formosa MF et al (2009) High-density lipoprotein modulates glucose metabolism in patients with type 2 diabetes mellitus. Circulation 119(15):2103–2111

    Article  CAS  Google Scholar 

  6. Schmidt MI, Duncan BB, Bang H et al (2005) Identifying individuals at high risk for diabetes: the Atherosclerosis Risk in Communities study. Diabetes Care 28:2013–2018

    Article  Google Scholar 

  7. Wilson PW, Meigs JB, Sullivan L, Fox CS, Nathan DM, D’Agostino RB Sr (2007) Prediction of incident diabetes mellitus in middle-aged adults: the Framingham Offspring Study. Arch Intern Med 167:1068–1074

    Article  Google Scholar 

  8. Abbasi A, Corpeleijn E, Gansevoort RT et al (2013) Role of HDL cholesterol and estimates of HDL particle composition in future development of type 2 diabetes in the general population: the PREVEND study. J Clin Endocrinol Metab 98:E1352–E1359

    Article  CAS  Google Scholar 

  9. Ochoa-Guzmán A, Moreno-Macías H, Guillén-Quintero D et al (2020) R230C but not -565C/T variant of the ABCA1 gene is associated with type 2 diabetes in Mexicans through an effect on lowering HDL-cholesterol levels. J Endocrinol Invest. https://doi.org/10.1007/s40618-020-01187-8

    Article  PubMed  Google Scholar 

  10. Guerra-García MT, Moreno-Macías H, Ochoa-Guzmán A et al (2020) The -514C>T polymorphism in the LIPC gene modifies type 2 diabetes risk through modulation of HDL-cholesterol levels in Mexicans. J Endocrinol Invest. https://doi.org/10.1007/s40618-020-01346-x

    Article  PubMed  Google Scholar 

  11. Blanco-Rojo R, Perez-Martinez P, Lopez-Moreno J et al (2017) HDL cholesterol efflux normalised to apoA-I is associated with future development of type 2 diabetes: from the CORDIOPREV trial. Sci Rep 7:12499

    Article  Google Scholar 

  12. Szili-Torok T, Annema W, Anderson JLC, Bakker SJL, Tietge UJF (2019) HDL cholesterol efflux predicts incident new-onset diabetes after transplantation (NODAT) in renal transplant recipients independent of HDL cholesterol levels. Diabetes 68(10):1915–1923

    Article  CAS  Google Scholar 

  13. Saleheen D, Scott R, Javad S et al (2015) Association of HDL cholesterol efflux capacity with incident coronary heart disease events: a prospective case-control study. Lancet Diabetes Endocrinol 3:507–513

    Article  CAS  Google Scholar 

  14. Dullaart RP, Annema W, de Boer JF, Tietge UJ (2012) Pancreatic β-cell function relates positively to HDL functionality in well-controlled type 2 diabetes mellitus. Atherosclerosis 222:567–573

    Article  CAS  Google Scholar 

  15. Fryirs MA, Barter PJ, Appavoo M et al (2010) Effects of high-density lipoproteins on pancreatic beta-cell insulin secretion. Arterioscler Thromb Vasc Biol 30:1642–1648

    Article  CAS  Google Scholar 

  16. Rye KA, Barter PJ, Cochran BJ (2016) Apolipoprotein A-I interactions with insulin secretion and production. Curr Opin Lipidol 27:8–13

    Article  CAS  Google Scholar 

  17. Nilsson O, Del Giudice R, Nagao M, Grönberg C, Eliasson L, Lagerstedt JO (2020) Apolipoprotein A-I primes beta cells to increase glucose stimulated insulin secretion. Biochim Biophys Acta Mol Basis Dis 1866(3):165613

    Article  CAS  Google Scholar 

  18. Cochran BJ, Bisoendial RJ, Hou L et al (2014) Apolipoprotein A-I increases insulin secretion and production from pancreatic β-cells via a G-protein-cAMP-PKA-FoxO1-dependent mechanism. Arterioscler Thromb Vasc Biol 34(10):2261–2267

    Article  CAS  Google Scholar 

  19. Camont L, Lhomme M, Rached F et al (2013) Small, dense high-density lipoprotein-3 particles are enriched in negatively charged phospholipids: relevance to cellular cholesterol efflux, antioxidative, antithrombotic, anti-inflammatory, and antiapoptotic functionalities. Arterioscler Thromb Vasc Biol 33(12):2715–2723

    Article  CAS  Google Scholar 

  20. Kontush A, Chapman MJ (2010) Antiatherogenic function of HDL particle subpopulations: focus on antioxidative activities. Curr Opin Lipidol 21(4):312–318

    Article  CAS  Google Scholar 

  21. Barter PJ, Nicholls S, Rye KA, Anantharamaiah GM, Navab M, Fogelman AM (2004) Antiinflammatory properties of HDL. Circ Res 95(8):764–772

    Article  CAS  Google Scholar 

  22. Arora S, Patra SK, Saini R (2016) HDL-A molecule with a multi-faceted role in coronary artery disease. Clin Chim Acta 452:66–81

    Article  CAS  Google Scholar 

  23. Feng M, Darabi M, Tubeuf E et al (2019) Free cholesterol transfer to high-density lipoprotein (HDL) upon triglyceride lipolysis underlies the U-shape relationship between HDL-cholesterol and cardiovascular disease. Eur J Prev Cardiol 27(15):1606–1616

    Article  Google Scholar 

  24. Kontush A, Chantepie S, Chapman MJ (2003) Small, dense HDL particles exert potent protection of atherogenic LDL against oxidative stress. Arterioscler Thromb Vasc Biol 23(10):1881–1888

    Article  CAS  Google Scholar 

  25. Bonnefont-Rousselot D, Benouda L, Bittar R et al (2020) Antiatherogenic properties of high-density lipoproteins from arterial plasma are attenuated as compared to their counterparts of venous origin. Nutr Metab Cardiovasc Dis 30(1):33–39

    Article  CAS  Google Scholar 

  26. Rached F, Lhomme M, Camont L et al (2015) Defective functionality of small, dense HDL3 subpopulations in ST segment elevation myocardial infarction: relevance of enrichment in lysophosphatidylcholine, phosphatidic acid and serum amyloid A. Biochim Biophys Acta 1851(9):1254–1261

    Article  CAS  Google Scholar 

  27. Chapman MJ, Goldstein S, Lagrange D, Laplaud PM (1981) A density gradient ultracentrifugal procedure for the isolation of the major lipoprotein classes from human serum. J Lipid Res 22:339–358

    Article  CAS  Google Scholar 

  28. Gomez Rosso L, Lhomme M, Meroño T et al (2017) Poor glycemic control in type 2 diabetes enhances functional and compositional alterations of small, dense HDL3c. Biochim Biophys Acta 1862:188–195

    Article  CAS  Google Scholar 

  29. Muñoz-Hernandez L, Ortiz-Bautista RJ, Brito-Córdova G et al (2018) Cholesterol efflux capacity of large, small and total HDL particles is unaltered by atorvastatin in patients with type 2 diabetes. Atherosclerosis 277:72–79

    Article  Google Scholar 

  30. Ibarra-Lara L, Sánchez-Aguilar M, Sánchez-Mendoza A et al (2016) Fenofibrate therapy restores antioxidant protection and improves myocardial insulin resistance in a rat model of metabolic syndrome and myocardial ischemia: the role of angiotensin II. Molecules 22(1):31

    Article  Google Scholar 

  31. Straub SG, Sharp GW (2002) Glucose-stimulated signaling pathways in biphasic insulin secretion. Diabetes Metab Res Rev 18(6):451–463

    Article  CAS  Google Scholar 

  32. Ronsein GE, Heinecke JW (2017) Time to ditch HDL-C as a measure of HDL function? Curr Opin Lipidol 28(5):414–418

    Article  CAS  Google Scholar 

  33. Du XM, Kim MJ, Hou L et al (2015) HDL particle size is a critical determinant of ABCA1-mediated macrophage cellular cholesterol export. Circ Res 116(7):1133–1142

    Article  CAS  Google Scholar 

  34. Poteryaeva ON, Usynin IF (2018) Antidiabetic role of high density lipoproteins. Biomed Khim 64(6):463–471

    Article  CAS  Google Scholar 

  35. Li N, Fu J, Koonen DP, Kuivenhoven JA, Snieder H, Hofker MH (2014) Are hypertriglyceridemia and low HDL causal factors in the development of insulin resistance? Atherosclerosis 233(1):130–138

    Article  CAS  Google Scholar 

  36. Asztalos BF, Tani M, Schaefer EJ (2011) Metabolic and functional relevance of HDL subspecies. Curr Opin Lipidol 22(3):176–185

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Ana Ochoa-Guzmán is a PhD student from Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM) and she was supported by Consejo Nacional de Ciencia y Tecnología (CONACyT) fellowship 468294. We thank Saúl Cano-Colín, Myrian Velasco and Angelina López for technical assistance.

Funding

We thank Consejo Nacional de Ciencia y Tecnología (CONACyT) for financial support (Project 128877).

Author information

Authors and Affiliations

Authors

Contributions

A-OG designed, performed experiments, analyzed data and wrote the manuscript. D-GQ, L-MH, AG, ED-D, RR-G, and IBM-A designed and/or performed experiments. OP-M, AZ-D and CAA-S designed, supervised the research and edited the manuscript. MTT-L designed, supervised the research and wrote the manuscript MTT-L is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Corresponding author

Correspondence to M. T. Tusié-Luna.

Ethics declarations

Conflict of interest

The authors declare that there are no competing conflicts of interest.

Ethics approval

All procedures perfomed in human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki Declaration and its later amendments ethical standars. The study was approved by The Committee of Ethics and the Institutional Review Board of the Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ).

Informed consent

All the participants provided written informed consent before inclusion in the study. Participants did not receive any stipend for taking part in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ochoa-Guzmán, A., Guillén-Quintero, D., Muñoz-Hernández, L. et al. The influence of high-density lipoprotein (HDL) and HDL subfractions on insulin secretion and cholesterol efflux in pancreatic derived β-cells. J Endocrinol Invest 44, 1897–1904 (2021). https://doi.org/10.1007/s40618-021-01504-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-021-01504-9

Keywords

Navigation