Skip to main content
Log in

Effects of seasonal changes of soil salinity and soil nitrogen on the N-metabolism of the halophyteArthrocnemum fruticosum (L.) Moq.

  • Published:
Plant and Soil Aims and scope Submit manuscript

Summary

The N-metabolism ofArthrocnemum fruticosum (L.) Moq., growing in a saline area north-east of the Dead Sea in Jordan, was studied over its vegetative growth period from March to September 1981. Plant and soil samples were taken at monthly intervals. Water content, Na+, K+, Cl, NH +4 , NO 2 and NO 3 concentrations were determined in the soil extracts, and the same determinations plus ash weight, soluble carbohydrates, proline, proteins andin vivo nitrate reductase in the plant roots and shoots.

Soil humidity decreased and salinity increased from March to August, with re-wetting occurring in late July. K+ and Cl were much lower in the soils than Na+. Plant relative dry weight increased during summer due to the absorption of Na+ in addition to increased organic dry weight. The uptake of Na+ was not balanced by a similar uptake of Cl.

Ammonium and nitrate decreased in soil and plants in parallel with increasing salinity. Nitrite was only found in the roots and always in very low quantities. Proline was found only in March. The total soluble carbohydrates in the roots showed a short increase in June when the sodium in the plants also increased. It was concluded that carbohydrates may be used to balance osmotic shocks, but that another compatible compounds is necessary to maintatin long-term osmotic equilibrium.

The nitrate reductase activity, measuredin vivo, and the soluble protein changed roughly in parallel with the internal nitrate from May to August, suggesting that nitrogen uptake and reduction in the plant is inhibited during summer when the soil is dry and very saline. This could be a direct effect of drought and/or salinity on the plants, or an indirect onevia an inhibition of nitrifying bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abu-Gharbieh M 1971 Climate Atlas of Jordan. Ministry of Transport, Meteorological Department, Amman, Jordan.

    Google Scholar 

  2. Ahmad I, Larher F and Stewart G R 1979 Sorbitol, a compatible osmotic solute inPlantago maritima. New Phytol. 82, 671–678.

    CAS  Google Scholar 

  3. Ahmad I, Larher F and Stewart G R 1981 The accumulation of Δ'-acetyl ornithine and other solutes in the salt marsh grassPuccinellia maritima. Phytochem. 20, 1501–1504.

    CAS  Google Scholar 

  4. Albert R und Popp M 1978 Zur Rolle der Löslichen Kohlenhydrate in Halophyten des Neusiedlersee-Gebietes (Österreich). Oecol. Plant. 13, 27–42.

    Google Scholar 

  5. Austenfeld F-A 1974 Der Einfluß des NaCl und anderer Alkalisalze auf die Nitratreduktase activität vonSalicornia europaea L. Z. Pflanzenphysiol. 71, 288–296.

    CAS  Google Scholar 

  6. Austenfeld F-A 1974 Untersuchungen zum Ionenhaushalt vonSalicornia europaea L. unter besonderer Berücksichtigung des Oxalats in Abhängigkeit von der Substrat salinität. Biochem. Physiol. Pflanzen 165, 303–316.

    CAS  Google Scholar 

  7. Bates L S, Waldren R P and Teare I D 1973 Rapid determination of free proline for waterstress studies. Plant and Soil 39, 205–207.

    Article  CAS  Google Scholar 

  8. Billard J P and Boucaud J 1980 Effect of NaCl on the activities of glutamate synthase from a halophyteSuaeda maritima and from a glycophytePhaseolus vulgaris. Phytochem. 19, 1939–1942.

    Article  CAS  Google Scholar 

  9. Doddema H 1978 Uptake of nitrate by chlorate resistant mutants ofArabidopsis thaliana (L.) Heynh. Ph.D. Thesis, University of Groningen, The Netherlands.

    Google Scholar 

  10. Fales F W 1975 The assimilation and degradation of carbohydrates by yeast cells. J. Biol. Chem. 193, 113–124.

    Google Scholar 

  11. Flowers T J, Troke P F and Yeo A R 1977 The mechanism of salt tolerance in halophytes. Annu. Rev. Plant Physiol. 28, 89–121.

    Article  CAS  Google Scholar 

  12. Gandhi A P and Paliwal K V 1976 Mineralization and gaseous losses of nitrogen from urea and am monium sulphate in salt affected soils. Plant and Soil 45, 247–255.

    Article  CAS  Google Scholar 

  13. Goas M, Larher F et Goas G 1970 Mise en évidence des acides pipécolique et 5-hydroxypipécolique dans certaines halophytes. C R. Acad. Sci. Paris 271, 1368–1371.

    CAS  Google Scholar 

  14. Hall J L and Flowers T J 1973 The effect of salt on protein synthesis in the halophyteSuaeda maritima. Planta 110, 361–368.

    Article  CAS  Google Scholar 

  15. Heilman P 1975 Effect of added salts on nitrogen release and nitrate levels in forest soils of the Washington coastal area. Soil Sci. Soc. Am. Proc. 39, 778–782.

    CAS  Google Scholar 

  16. Heimer Y M 1973 The effects of sodium chloride, potassium chloride and glycerol on the activity of nitrate reductase of a salt-tolerant and two non-tolerant plants. Planta 113, 279–281.

    Article  CAS  Google Scholar 

  17. Heuer B, Plaut Z and Federman E 1979 Nitrate and nitrite reduction in wheat leaves as affected by different types of water stress. Physiol. Plant. 46, 318–323.

    CAS  Google Scholar 

  18. Huber W 1974 Über den Einfluß von NaCl-oder Abscisinsäure-behandlung auf den Proteinmetabolismus und einige weitere Enzyme des Aminosäurestoffwechsels in Keimlingen vonPennisetum typhoides. Planta 121, 225–235.

    Article  CAS  Google Scholar 

  19. Jaworski E G 1971 Nitrate reductase assay in intact plant tissues. Biochem. Biophys. Res. Commun. 43, 1274–1279.

    Article  CAS  PubMed  Google Scholar 

  20. Kovda V A 1983 Loss of productive land due to salinization. Ambio 12, 91–93.

    Google Scholar 

  21. Larher F et Hamelin J 1975 l'acide β-trimethylaminopropionique des rameaux deLimonium vulgare Mill. Phytochem. 14, 205–207.

    CAS  Google Scholar 

  22. Laura R D 1977 Salinity and nitrogen mineralization in soil. Soil Biol. Biochem. 9, 333–336.

    Article  CAS  Google Scholar 

  23. Lowry O H, Rosenbrough N J, Farr A J and Randall R J 1951 protein measurement with the folin phenol reagent. J. biol. Chem. 193, 265–275.

    CAS  PubMed  Google Scholar 

  24. Mahasneh A, Budour S and Doddema H 1984 Nitrification and seasonal changes in bacterial populations in the rhizosphere ofSuaeda andArthrocnemum species growing in saline soils. Plant and Soil 82, 149–154.

    Article  CAS  Google Scholar 

  25. Miflin B J and Lea P J 1976 The pathway of nitrogen assimilation in plants. Phytochem. 15, 873–885.

    Article  CAS  Google Scholar 

  26. Nilsen E T and Müller W H 1981 The influence of low water potential on the growth and nitrogen metabolism of the native California shrubLotus scoparius (Nutt. in T and G) Ottley. Am. J. Bot. 68, 402–407.

    CAS  Google Scholar 

  27. Pflüger R und Wiedemann R 1977 Der Einfluß monovalenter Kationen auf die Nitratreduktion vonSpinacia oleracea L. Z. Pflanzen physiol. 85, 125–133.

    Google Scholar 

  28. Plaut Z 1974 Nitrate reductase activity in wheat seedlings during exposure to and recovery from water stress and salinity. Physiol. Plant. 30, 212–217.

    CAS  Google Scholar 

  29. Runge M 1983 Physiology and ecology of nitrogen nutrition. In Encycl. of Plant Physiol. New Series Vol 12C, O L Lange, P S Nobel, C B Osmond and H Ziegler, eds. Springer-Verlag Berlin 163–200.

    Google Scholar 

  30. SaadEddin R 1983 Eco-physiological studies on the halophyteArthrocnemum fruticosum (L.) Moq. in Jordan. M.Sc. Thesis, University of Jordan, Amman, Jordan.

    Google Scholar 

  31. Sankhla N and Huber W 1975 Effect of salt and abscisic acid onin vivo activity of nitrate reductase in seedlings ofPhaseolus aconitifolius. Z. Pflanzenphysiol. 76, 467–470.

    CAS  Google Scholar 

  32. Siegel R S 1980 Determination of nitrate and exchangeable ammonium in soil extracts by an ammonia electrode. Soil. Sci. Soc. Am. Proc. 44, 943–947.

    CAS  Google Scholar 

  33. Singh B R, Agarwal A S and Kahehiro Y 1969 Effect of chloride salts on ammonium nitrogen release in two Hawaiian soils. Soil Sci. Soc. Am. Proc. 33, 557–560.

    CAS  Google Scholar 

  34. Singh T N, Paleg L G and Aspinall D 1973 Stress metabolism I. Nitrogen metabolism and growth in the barley plant during water stress. Aust. J. Biol. Sci. 26, 45–56.

    CAS  Google Scholar 

  35. Snell F D and Snell C I 1949 Colorimetric Methods of Analysis, Vol II. D van Nostrand Company Inc. New York, 802 p.

    Google Scholar 

  36. Stewart G R, Larher F, Ahmad I and Lee J A 1979 Nitrogen metabolism and salt tolerance in higher plant halophytes. In Ecological Processes in Coastal Environments. R L Jefferies and A J Davy, eds. Blackwell Scientific Publ. Oxford 211–227.

    Google Scholar 

  37. Storey R and Wyn Jones R G 1975 Betaine and choline levels in plants and their relationship to NaCl stress. Plant Sci. Letters 4, 161–168.

    Article  CAS  Google Scholar 

  38. Westerman R L and Tucker T C 1974 Effect of salts and salts plus nitrogen-15-labeled ammonium chloride on mineralization of soil nitrogen, nitrification and immobilization. Soil Sci. Soc. Am. Proc. 38, 602–605.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doddema, H., Saad Eddin, R. & Mahasneh, A. Effects of seasonal changes of soil salinity and soil nitrogen on the N-metabolism of the halophyteArthrocnemum fruticosum (L.) Moq.. Plant Soil 92, 279–293 (1986). https://doi.org/10.1007/BF02372641

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02372641

Key words

Navigation