Skip to main content
Log in

Tectonics and climate

  • Review Article
  • Published:
Geologische Rundschau Aims and scope Submit manuscript

Abstract

Tectonics and climate are both directly and indirectly related. The direct connection is between uplift, atmospheric circulation, and the hydrologic cycle. The indirect links are via subduction, volcanism, the introduction of gasses into the atmosphere, and through erosion and consumption of atmospheric gases by chemical weathering. Rifting of continental blocks involves broad upwarping followed by subsidence of a central valley and uplift of marginal shoulders. The result is an evolving regional climate which has been repeated many times in the Phanerozoic: first a vapor-trapping arch, followed by a rift valley with fresh-water lakes, culminating in an arid rift bordered by mountains intercepting incoming precipitation. Convergence tectonics affects climate on a larger scale. A mountain range is a barrier to atmospheric circulation, especially if perpendicular to the circulation. It also traps water vapor converting latent to sensible heat. Broad uplift results in a shorter path for both incoming and outgoing radiation resulting in seasonal climate extremes with reversals of atmospheric pressure and enhanced monsoonal circulation. Volcanism affects climate by introducing ash and aerosols into the atmosphere, but unless these are injected into the stratosphere, they have little effect. Stratospheric injection is most likely to occur at high latitudes, where the thickness of the troposphere is minimal. Volcanoes introduce CO2, a greenhouse gas, into the atmosphere. Geochemical effects of tectonic uplift and unroofing relate to the weathering of silicate rocks, the means by which CO2 is removed from the atmosphere-ocean system on long-term time scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arthur MA, Dean WA, Schlanger SO (1985) Variations in the global carbon cycle during the Cretaceous related to climate, volcanism, and changes in atmospheric CO2. In: Sundquist ET, Broecker WS (eds) The carbon cycle and atmospheric CO2: natural variations Archaean to present. Geophys Monogr Ser 32:504–529

  • Axelrod DI (1962) Post-Pliocene uplift of the Sierra Nevada, California. Geol Soc Am Bull 73:183–198

    Google Scholar 

  • Axelrod DI (1985) Rise of the grassland biome, central North America. Botan Rev 51:163–201

    Google Scholar 

  • Baker BH, Wohlenberg J (1971) Structure and evolution of the Kenya rift valley. Nature 229:538–542

    Article  Google Scholar 

  • Barker PF, Burrell J (1977) The opening of Drake passage. Marine Geology 25:15–34

    Article  Google Scholar 

  • Barron EJ (1981) Paleogeography as a climatic forcing factor. Geol Rundsch 70:737–747

    Article  Google Scholar 

  • Barron EJ (1985) Explanations of the Tertiary global cooling trend. Palaeogeogr Palaeoclimatol Palaeoecol 50:45–61

    Article  Google Scholar 

  • Barron EJ, Washington WM (1984) The role of geographic variables in explaining paleoclimates: results from Cretaceous climate model sensitivity studies. J Geophys Res 89:1267–1279

    Google Scholar 

  • Barron EJ, Washington WM (1985) Warm Cretaceous climates: high atmospheric CO2 as a plausible mechanism. In: Sundquist ET, Broecker WS (eds) The carbon cycle and atmospheric CO2: natural variations Archaean to present. Geophys Monogr Ser 32:546–553

  • Barron EJ, Sloan JL, Harrison CG (1980) Potential significance of land-sea distribution and surface albedo variations as a climatic forcing factor: 180 m.y. to the present. Palaeogeogr Palaeoclimatol Palaeoecol 30:17–40

    Article  Google Scholar 

  • Barron EJ, Harrison CG, Sloan JL, Hay WW (1981) Paleogeography, 180 million years ago to the present. Ecol Geol Helvet 74:443–470

    Google Scholar 

  • Barron EJ, Thompson SL, Hay WW (1984) Continental distribution as a forcing factor for global scale temperature. Nature 310:574–575

    Article  Google Scholar 

  • Barry RG (1981) Mountain weather and climate. Meuthen, London, p. 313

    Google Scholar 

  • Barry RG, Chorley RJ (1982) Atmosphere, weather and climate, fourth edition. Meuthen, London, p. 407

    Google Scholar 

  • Barry RG, Andrews JT, Mahaffy MA (1975) Continental ice sheets: conditions for growth. Science 190:979–981

    Google Scholar 

  • Behrendt JC, Cooper AK (1991) Evidence of rapid Cenozoic uplift of the shoulder escarpment of the Cenozoic West Antarctic rift system and a speculation on possible climate forcing. Geology 19:315–319

    Article  Google Scholar 

  • Benjamin M, Johnson NM, Naeser CW (1987) Recent rapid uplift in the Bolivian Andes: evidence from fission track dating. Geology 15:680–683

    Article  Google Scholar 

  • Berger WH, Spitzy A (1988) History of atmospheric CO2: constraints from the deep-sea record. Paleoceanography 3:401–411

    Google Scholar 

  • Berger WH, Vincent E, Thierstein H (1981) The deep-sea record: major steps in Cenozoic ocean evolution. In: Warme JE, Douglas RE, Winterer EL (eds) The Deep Sea Drilling Project: a decade of progress. Soc Econ Paleontol Mineral Spec Publ 32:489–504

    Google Scholar 

  • Berggren WA, Hollister CD (1974) Paleogeography, paleobiogeography, and the history of circulation of the Atlantic Ocean. In: Hay WW (ed) Studies in paleo-oceanography. Soc Econ Paleontol Mineral Spec Publ 20:126–186

    Google Scholar 

  • Berner RA (1991) A model for atmospheric CO2 over Phanerozoic time. Am J Sci 291:39–376

    Google Scholar 

  • Berner RA (1994) Geocarb II: a revised model of atmospheric CO2 over Phanerozoic time. Am J Sci 294:56–91

    Google Scholar 

  • Berner RA, Lasaga AC, Garrels RM (1983) The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am J Sci 283:641–683

    Google Scholar 

  • Birchfield GE, Weertman J (1983) Topography, albedo-temperature feedback, and climate sensitivity. Science 219:284–285

    Google Scholar 

  • Birchfield GE, Weertman J, Lunde A (1992) A model study of the role of high-latitude topography in the climatic response to orbital insolation anomalies. J Atmos Sci 39:71–87

    Google Scholar 

  • Bohrmann G, Henrich R, Thiede J (1990) Miocene to Quaternary paleoceanography in the northern North Atlantic: variability in carbonate and biogenic opal accumulation. In: Bleil U, Thiede J (eds) Geological history of the polar oceans: Arctic versus Antarctic. Kluwer, Dordrecht, The Netherlands, pp 647–675

    Google Scholar 

  • Bolin B (1950) On the influence of the earth’s orography on the general character of the westerlies. Tellus 2:1894–1895

    Google Scholar 

  • Brady PV (1991) The effect of silicate weathering on global temperature and atmospheric CO2. J Geophys Res 96 (18):101–106

    Google Scholar 

  • Brass GW, Southam JR, Peterson WH (1982) Warm saline bottom waters in the ancient ocean. Nature 296:620–623

    Google Scholar 

  • Broccoli AJ, Manabe S (1992) The effects of orography on middle latitude dry climates. J Climate 5:1181–1201

    Article  Google Scholar 

  • Brock JC, McClain CA, Hay WW (1992) A southwest monsoon hydrographic climatology for the northwestern Arabian Sea. J Geophys Res 97 (9):455–465

    Google Scholar 

  • Budyko MI, Ronov AB (1979) Chemical evolution of the atmosphere in the Phanerozoic. Geochem Int 15:1–9

    Google Scholar 

  • Budyko MI, Ronov AB, Yanshin AL (1987) History of the earth’s atmosphere. Springer, Berlin Heidelberg New York, p. 139.

    Google Scholar 

  • Caputo MV, Crowell JC (1985) Migration of glacial centers across Gondwana during the Paleozoic Era. Geol Soc Am Bull 96:1020–1036

    Article  Google Scholar 

  • Cerling TE (1991) Carbon dioxide in the atmosphere: evidence from Cenozoic and Mesozoic paleosols. Am J Sci 291:377–400

    Google Scholar 

  • Chamberlin TC (1899) An attempt to frame a working hypothesis of the cause of glacial periods on an atmospheric basis. J Geol 7:545–584, 667–685, 751–787

    Google Scholar 

  • Charney JG, Eliassen A (1949) A numerical method for predicting the perturbations of the middle-latitude westerlies. Tellus 1:38–54

    Google Scholar 

  • Chen S, Trenberth KE (1988a) Orographically forced planetary waves in the northern hemisphere winter: steady state model with wave-coupled lower boundary formulation. J Atmos Sci 45:657–680

    Google Scholar 

  • Chen S, Trenberth KE (1988b) Forced planetary waves in the northern hemisphere winter: wave coupled orographic and thermal forcings. J Atmos Sci 45:657–680

    Google Scholar 

  • Cirbus L (1994) Equable climates during the early Eocene: significance of regional paleogeography for the North American climate. Geology 22:881–884

    Google Scholar 

  • Cloetingh S, Kooi H (1992) Tectonics and global change — inferences from Late Cenozoic subsidence and uplift patterns in the Atlantic/Mediterranean region. Terra Nova 4:340–350

    Google Scholar 

  • Coakley JA, Cess RA (1985) Response of the NCAR Community Climate Model to radiative forcing by the naturally occurring tropospheric aerosol. J Atmos Sci 42:1677–1692

    Google Scholar 

  • Coates AG, Jackson JB, Collins LS et al. (1993) Closure of the Isthmus of Panama: the near-shore marine record of Costa Rica and western Panama. Geol Soc Am Bull 104:814–828

    Google Scholar 

  • Coffin MF (1992) Subsidence of the Kerguelen plateau: the Atlantic concept. In: Wise SW, Schlich R, Palmer Julson AA et al. (eds) Proc Ocean Drilling Program, scientific results, vol 120. Ocean Drilling Program, College Station, Texas, pp 945–949

    Google Scholar 

  • Coffin MF, Eldholm O (1992) Volcanism and continental breakup: a global compilation of large igneous provinces. In: Storey BC, Alabaster T, Pankhurst RJ (eds) Magmatism and the causes of continental breakup. Geol Soc Lond Spec Publ 68:17–30

    Google Scholar 

  • Coffin MF, Eldholm O (1993a) Scratching the surface: estimating dimensions of large igneous provinces. Geology 21:515–518

    Article  Google Scholar 

  • Coffin MF, Eldholm O (1993b) Large igneous provinces. Sci Am 269 (4):42–49

    Google Scholar 

  • Cook KH, Held IM (1988) Stationary waves of the ice age climate. J Climate 1:807–819

    Article  Google Scholar 

  • Cox MD (1989) An idealized model of the world ocean. Part I. The global-scale water masses. J Phys Oceanogr 19:1730–1752

    Article  Google Scholar 

  • Crowell JC, Frakes LA (1970) Phanerozoic glaciations and the causes of ice ages. Am J Sci 268:193–224

    Google Scholar 

  • Crowley TJ, Baum SK (1992) Modeling Late Paleozoic glaciation. Geology 20:507–510

    Article  Google Scholar 

  • Crowley TJ, North GR (1991) Paleoclimatology. Oxford University Press, New York, p. 339

    Google Scholar 

  • Curray JR, Moore DG (1971) Growth of the Bengal deep-sea fan and denudation of the Himalayas. Geol Soc Am Bull 82:563–572

    Google Scholar 

  • Dana JD (1856) On American geological history: 1856. Am J Sci 22:305–344

    Google Scholar 

  • Davies TA, Hay WW, Southam JR, Worsley TR (1977) Estimates of Cenozoic oceanic sedimentation rates. Science 197:53–55

    Google Scholar 

  • Dercourt J, Ricou LE, Vrielynck (eds) (1992) Atlas: Tethys Paleoenvironmental Maps. Gauthier-Villars, Paris, pp 307

    Google Scholar 

  • DeSitter LU (1952) Pliocene uplift of Tertiary mountain chains. Am J Sci 250:297–307

    Google Scholar 

  • Donn WL, Shaw DM (1977) Model of climate evolution based on continental drift and polar wandering. Geol Soc Am Bull 88:390–396

    Article  Google Scholar 

  • Droxler AW, Burke K (1995) Cenozoic gateway opening and closing in the Caribbean: control on inter-oceanic and interhemispheric exchange of water masses between the Atlantic and Pacific Oceans? EOS 76 (Suppl 53)

  • Droxler AW, Cunningham A, Hine AC et al. (1992) Late middle (?) Miocene segmentation of an Eocene-early Miocene carbonate megabank on the northern Nicaragua rise tied to tectonic activity at the North American/Caribbean plate boundary zone. EOS 73 (Suppl) 43:299

    Google Scholar 

  • Duque-Caro H (1990) Neogene stratigraphy, paleoceanography, and paleobiogeography in northwest South America and the evolution of the Panama Seaway. Palaeogeogr Palaeoclimatol Palaeoecol 77:203–234

    Google Scholar 

  • Emiliani C (1992) Planet earth: cosmology, geology, and the evolution of life and environment. Cambridge University Press, New York, p. 719

    Google Scholar 

  • Emiliani C, Geiss J (1959) On glaciations and their causes. Geol Rundsch 46:576–601

    Article  Google Scholar 

  • England MH (1992) On the formation of Antarctic intermediate and bottom water in ocean general circulation models. J Phys Oceanogr 22:918–926

    Article  Google Scholar 

  • England P, Molnar P (1990) Surface uplift, uplift of rocks, and exhumation of rocks. Geology 18:1173–1177

    Article  Google Scholar 

  • Findlater J (1966) Cross-equatorial jet streams at low level over Kenya. Meteor Mag 95:353–364

    Google Scholar 

  • Findlater J (1974) The low-level cross-equatorial air current of the western Indian Ocean during the northern summer. Weather 29:411–416

    Google Scholar 

  • Findlater J (1977) Observational aspects of the low-level cross-equatorial jet stream of the western Indian Ocean. Pageogh 115:1251–1261

    Google Scholar 

  • Flint RF (1943) Growth of the North American ice sheet during the Wisconsin age. Geol Soc Am Bull 54:325–362

    Google Scholar 

  • Flint RF (1957) Glacial and Pleistocene geology. Wiley, New York, p. 553

    Google Scholar 

  • Flohn H (1950) Studien zur allgemeinen Zirkulation der Atmosphäre. Berichte des deutschen Wetterdienstes 18:34–50

    Google Scholar 

  • Flohn H (1974) Background of a geophysical model of the initiation of the next glaciation. Quaternary Res 4:385–404

    Google Scholar 

  • Frakes LA, Francis JE, Syktus J (1992) Climate modes of the Phanerozoic. Cambridge University Press, New York, p. 285

    Google Scholar 

  • Gable DJ, Hatton T (1983) Maps of vertical crustal movements in the conterminous United States over the past 10 million years. U.S. Geological Survey Miscellaneous Investigations Series, Map I-1315

  • Gartner S, Chow J, Stanton RJ (1987) Late Neoene paleoceanography of the eastern Caribbean, Gulf of Mexico and eastern equatorial Pacific. Mar Micropaleontol 12:255–304

    Article  Google Scholar 

  • Gates WL (1976a) Modelling the ice-age climate. Science 191:1138–1144

    Google Scholar 

  • Gates WL (1976b) The numerical simulation of the ice-age climate with a global general circulation model. J Atmos Sci 33:1844–1873

    Article  Google Scholar 

  • Gill AE, Bryan K (1971) Effects of geometry on the circulation of a three-dimensional southern hemisphere model

  • Guetter PJ, Kutzbach JE (1990) A modified Köppen classification applied to model simulations of glacial and interglacial climates. Climatic Change 16:193–215

    Article  Google Scholar 

  • Hahn DG, Manabe T (1975) The role of mountains in the South Asian monsoon circulation. J Atmos Sci 32:1515–1541

    Article  Google Scholar 

  • Hamilton W (1968) Cenozoic climatic change and its cause. Meteorol Monogr 8:128–133

    Google Scholar 

  • Hamilton W (1979) Tectonics of the Indonesian region: U.S. Geological Survey Professional Paper 1078. U.S. Government Printing Office, Washington, D.C., p. 345

    Google Scholar 

  • Handler P (1989) The effect of volcanic aerosols on global climate. J Volcanol Geotherm Res 37:233–249

    Article  Google Scholar 

  • Haq BU (1981) Paleogene paleoceanography: early Cenozoic oceans revisited Oceanol Acta 4 (Suppl):71–82

    Google Scholar 

  • Haq B (1984) Paleoceanography: a synoptic overview of 200 million years of ocean history. In: Haq B, Milliman J (eds) Marine geology and oceanography of the Arabian Sea and coastal Pakistan. Van Nostrand Reinhold Co., New York, pp 201–231

    Google Scholar 

  • Harrison TM, Copeland P, Kidd WS (1992) Raising Tibet. Science 255:1663–1670

    Google Scholar 

  • Harvey LD (1988) Clmatic impact of ice-age aerosols. Nature 334:333–335

    Google Scholar 

  • Hasselmann K (1982) An ocean model for climate variability studies. Prog Oceanogr 11:69–92

    Article  Google Scholar 

  • Hay WW (1993) The role of polar deep water formation in global climate change. Annu Rev Earth Planet Sci 21:227–254

    Article  Google Scholar 

  • Hay WW (1994) Pleistocene-Holocene fluxes are not the earth’s norm. In: Hay W, Usselman T (eds) Material fluxes on the surface of the earth: studies in geophysics. National Academy Press, Washington, D.C., pp 15–27

    Google Scholar 

  • Hay WW, Brock JC (1992) Temporal variation in intensity of upwelling off southwest Africa. In: Sumerhayes C, Prell W, Emeis K (eds) Upwelling systems: evolution since the Early Miocene. Geol Soc Lond Spec Publ 63:463–497

    Google Scholar 

  • Hay WW, Southam JR (1977) Modulation of marine sedimentation by the continental shelves. In: Anderson N, Malahoff A (eds) The fate of fossil fuel CO2 in the oceans. Plenum Press, New York, pp 569–604

    Google Scholar 

  • Hay WW, Wold CN (1990) Relation of selected mineral deposits to the mass/age distribution of Phanerozoic sediments. Geol Rundsch 79:495–512

    Article  Google Scholar 

  • Hay WW, Wold CN (1996) A simpler plate tectonic history for the Caribbean. Zentralb Geol Paläontol Teil I, 1994, 917–934

  • Hay WW, Barron EJ, Thompson SL (1990a) Global atmospheric circulation experiments on an earth with a meridional pole-to-pole continent. J Geol Soc Lond 147:385–392

    Google Scholar 

  • Hay WW, Barron EJ, Thompson SL (1990b) Global atmospheric circulation experiments on an earth with polar and tropical continents. J Geol Soc Lond 147:749–757

    Google Scholar 

  • Hay WW, Behensky JF Jr, Barron EJ, Sloan JL II (1982) Late Triassic-Liassic paleoclimatology of the proto-Central North Atlantic rift system. Palaeogeogr Palaeoclimatol Palaeoecol 40:13–30

    Article  Google Scholar 

  • Hay WW, Shaw CA, Wold CN (1989) Mass-balanced paleogeographic reconstructions. Geol Rundsch 78:207–242

    Article  Google Scholar 

  • Hellermann S, Rosenstein M (1983) Normal monthly wind stress data over the world ocean with error estimates. J Phys Oceanogr 13:1093–1104

    Google Scholar 

  • Hinz K (1981) A hypothesis on terrestrial catastrophes. Geol Jahrb E22:3–28

    Google Scholar 

  • Hopkins DM, MacNiel FS, Merklin RL, Petrov OM (1965) Quaternary correlations across Bering strait. Science 147:1107–1114

    Google Scholar 

  • Hsu J (1978) On the paleobotanical evidence for continental drift and Himalayan uplift. Paleobotany 25:131–142

    Google Scholar 

  • Hsü KJ, Montadert L, Bernoulli D et al. (1978) History of the Mediterranean salinity crisis. In: Hsü KJ, Montadert L et al. (eds) Init Rep Deep Sea Drilling Project, vol 42, part 1. U.S. Government Printing Office, Washington, D.C., pp 1053–1078

    Google Scholar 

  • Huggett RJ (1991) Climate, earth processes and earth history. Springer, Berlin Heidelberg New York, p. 281

    Google Scholar 

  • Hyde WT, Kim K, Crowley TJ, North GR (1990) On the relation between polar continentality and climate: studies with a nonlinear energy balance model. J Geophys Res 95 (18): 653–668

    Google Scholar 

  • Johnson DA (1985) Abyssal teleconnections II. Initiation of Antarctic bottom water flow in the southwestern Atlantic. In: Hsü KJ, Weissert H (eds) South Atlantic paleoceanography. Cambridge University Press, Cambridge, pp 243–281

    Google Scholar 

  • Johnson GL (1990) Morphology and plate tectonics: the modern polar oceans. In: Bleil U, Thiede J (eds) Geological history of the polar oceans: Arctic versus Antarctic. Kluwer, Dordrecht, The Netherlands, pp 11–28

    Google Scholar 

  • Kasahara A, Washington WM (1969) Thermal and dynamical effects of orography on the general circulation of the atmosphere. In: Proc WMO/IUGG Symp on Numerical Weather Prediction. Japan Meteorlogical Agency, Tokyo, pp IV47-IV56

    Google Scholar 

  • Kasahara A, Sasamori T, Washington WM (1973) Simulation experiments with a 12 layer stratospheric global circulation model. I. Dynamical effect of the earth’s orography and thermal influence of continentality. J Atmos Sci 30:1229–1251

    Article  Google Scholar 

  • Keller G, Zenker CE, Stone SM (1989) Late Neogene history of the Pacific-Caribbean gateway. J South Am Earth Sci 2:73–108

    Article  Google Scholar 

  • Kennett JP (1977) Cenozoic evolution of Antarctic glaciation, the circum-Antarctic current and their impact on global paleoceanography. J Geophys Res 82:3843–3860

    Google Scholar 

  • Kennett JP (1981) Marine tephrochronology. In: Emiliani C (ed) The sea, vol 7. The oceanic lithosphere. Wiley, New York, pp 1373–1436

    Google Scholar 

  • Kennett JP, Thunnell RC (1977) On explosive Cenozoic volcanism and climatic implications. Science 196:1231–1234

    Google Scholar 

  • Kennett JP, Watkins ND (1976) Regional deep-sea dynamic processes recorded by late Cenozoic sediments of the southeastern Indian Ocean. Geol Soc Am Bull 87:321–329

    Article  Google Scholar 

  • Kennett JP, Borch C von der, Baker PA et al. (1985) Palaeotectonic implications of increased late Eocene-early Oligocene volcanism from South Pacific DSDP sites. Nature 316:507–511

    Article  Google Scholar 

  • Kennett JP, Keller G, Srinivasan MS (1985) Miocene planktonic foraminiferal biogeography and paleoceanographic development of the Indo-Pacific. In: Kennett J (ed) The Miocene ocean: paleoceanography and biogeography: Memoir 163. Geol Soc Am 197–236

  • Kerr RA (1989) Volcanoes can muddle the greenhouse. Science 245:127–128

    Google Scholar 

  • Kerr A (1993) Topography, climate and ice masses: a review. Terra Nova 5:332–342

    Google Scholar 

  • Köppen W (1931) Grundriss der Klimakunde, Zweite Verbesserte Auflage der Klimate der Erde. de Gruyter, Berlin

    Google Scholar 

  • Kreichgauer D (1902) Die Aequatorfrage in der Geologie. Missionsdruckerei in Steyl, Kaldenkirchen/Rheinland

  • Kristoffersen Y (1990) On the tectonic evolution and paleoceanographic significance of the Fram strait gateway. In: Bleil U, Thiede J (eds) Geological history of the polar oceans: Arctic versus Antarctic. Kluwer, Dordrecht, The Netherlands, pp 63–76

    Google Scholar 

  • Kutzbach JE, Gallimore RG (1989) Pangaean climates: megamonsoons of the megacontinent. J Geophys Res 94:3341–3357

    Google Scholar 

  • Kutzbach JE, Guetter PJ (1986) The influence of changing orbital parameters and surface boundary conditions on climate simulations for the past 18000 years. J Atmos Sci 43:1726–1759

    Article  Google Scholar 

  • Kutzbach JE, Wright HE (1985) Simulation of the climate of 18000 yr BP: results for the North American/North Atlantic/European sector and comparison with the geologic record. Quaternary Sci Rev 4:147–187

    Article  Google Scholar 

  • Kutzbach JE, Guetter PJ, Ruddiman WF, Prell WL (1989) Sensitivity of climate to Late Cenozoic uplift in southern Asia and the American West: numerical experiments. J Geophys Res 94 (18):393–407

    Google Scholar 

  • Kutzbach JE, Prell WL, Ruddiman WF (1993) Sensitivity of Eurasian climate to surface uplift of the Tibetan plateau. J Geol 101:177–190

    Google Scholar 

  • Larson RL (1991a) Latest pulse of the earth: evidence for a mid-Cretaceous superplume. Geology 19:547–550

    Google Scholar 

  • Larson RL (1991b) Geological consequences of superplumes. Geology 19:963–966

    Google Scholar 

  • Lasaga AC, Berner RA, Garrels RM (1985) An improved geochemical model of atmospheric CO2 fluctuations over the past 100 million years. In: Sundquist ET, Broecker WS (eds) The carbon cycle and atmospheric CO2: natural variations Archaean to present: Geophys Monogr Ser 32:397–411

    Google Scholar 

  • Lawver LA, Muller RD, Srivastava SP, Roest W (1990) The opening of the Arctic Ocean. In: Bleil U, Thiede J (eds) Geological history of the polar oceans: Arctic versus Antarctic. Kluwer, Dordrecht, The Netherlands, pp 29–62

    Google Scholar 

  • Lawver LA, Gahagan LM, Coffin MF (1992) The development of paleoseaways around Antarctica. In: Kennett J, Warnke D (eds) The Antarctic paleoenvironment: a perspective on global change, 1. Antarctic Res Ser 56:7–30

    Google Scholar 

  • Ledley TS (1988) A wandering Gondwanaland’s impact on summer temperatures. Geophys Res Lett 5:1397–1400

    Google Scholar 

  • Luo H, Yanai M (1984) The large-scale circulation and heat sources over the Tibetan plateau and surrounding areas during the early summer of 1979. Part II. Heat and moisture budgets. Monthly Weather Rev 112:966–989

    Article  Google Scholar 

  • Lyell C (1830) Principles of geology, being an attempt to explain the former changes of the earth’s surface by reference to causes now in operation. John Murray, London

    Google Scholar 

  • Maier-Reimer E, Mikolajewicz U, Crowley TJ (1990) Ocean general circulation model sensitivity experiment with an open Central American isthmus. Paleoceanography 5:349–366

    Google Scholar 

  • Maier-Reimer E, Mikolajewicz U, Hasselmann K (1993) Mean circulation of the Hamburg large-scale geostrophic ocean general circulation model and its sensitivity to the thermohaline surface forcing. J Phys Oceanogr 23:731–757

    Article  Google Scholar 

  • Manabe S, Broccoli AJ (1985) The influence of continental ice sheets on the climate of an ice age. J Geophys Res 90:2167–2190

    Google Scholar 

  • Manabe S, Broccoli AJ (1990) Mountains and arid climate of middle latitudes. Science 247:192–195

    Google Scholar 

  • Manabe S, Bryan K (1985) CO2-induced change in a coupled ocean-atmosphere model and its paleoclimatic implications. J Geophys Res 90 (11):689–708

    Google Scholar 

  • Manabe S, Terpsta T (1974) The effects of mountains on the general circulation of the atmosphere as identified by numerical experiments. J Atmos Sci 31:3–42

    Google Scholar 

  • Marsiat I (1994) Simulation of the northern hemisphere continental ice sheets over the last glacial-interglacial cycle: experiments with a latitude-longitude vertically integrated ice sheet model coupled to a zonally averaged climate model. Paleoclimates 1:59–98

    Google Scholar 

  • Mass CF, Portman DA (1989) Major volcanic eruptions and climate: a critical evaluation. J Climate 2:566–593

    Article  Google Scholar 

  • Matthews RK (1968) Tectonic implications of glacio-eustatic sea level fluctuations. Earth Planet Sci Lett 5:459–462

    Article  Google Scholar 

  • McGee TJ, Newman P, Gross M et al. (1994) Correlation of ozone loss with the presence of volcanic aerosols. Geophys Res Lett 21:2801–2804

    Article  Google Scholar 

  • McKenzie JA, Oberhänsli H (1985) Paleoceanographic expressions of the Mediterranean salinity crisis. In: Hsü KJ, Weissert HJ (eds) South Atlantic paleoceanography. Cambridge University Press, Cambridge, pp 99–123

    Google Scholar 

  • Mélières M, Martinerie P, Raynaud D, Lliboutry L (1991) Glacial-interglacial mean sea level pressure change due to sea level, ice sheet and atmospheric mass changes. Palaeogeogr Palaeoclimatol Palaeoecol 89:333–340

    Google Scholar 

  • Mikolajewicz U, Maier-Reimer E, Crowley TJ, Kim K-Y (1993) Effect of Drake and Panamanian gateways on the circulation of an ocean model. Paleoceanography 8:409–426

    Google Scholar 

  • Molnar P, England P (1990) Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg? Nature 346:29–34

    Article  Google Scholar 

  • Mörner N (1977) Past and present uplift in Sweden: glacial isostatsy, tectonism and bedrock influence. Geol Fören Stockh Förhandl 99:48–54

    Google Scholar 

  • Mudie PL, Vernal A de, Head MJ (1990) Neogene to Recent palynostratigraphy of circum-Arctic basins: results of ODP Leg 104, Norwegian Sea, Leg 105, Baffin Bay, and DSDP site 611, Irminger Sea. In: Bleil U, Thiede J (eds) Geological history of the polar oceans: Arctic versus Antarctic. Kluwer, Dordrecht, The Netherlands, pp 609–646

    Google Scholar 

  • Murakami T (1987) Orography and monsoons. In: Fein J, Stephens P (eds) Monsoons. Wiley, New York, pp 331–364

    Google Scholar 

  • Nigam S, Held IM, Lyons SW (1988) Linear simulation of the stationary eddies in a GCM. Part II. The “mountain” model. J Atmos Sci 45:1433–1452

    Article  Google Scholar 

  • Nürnberg D, Müller RD (1991) The tectonic evolution of the South Atlantic from Late Jurassic to present. Tectonophysics 191:27–53

    Article  Google Scholar 

  • Oerlemans J (1980) Continental ice sheets and the planetary rediation budget. Quaternary Res 14:349–359

    Google Scholar 

  • Oglesby RJ (1991) Joining Australia to Antarctic: GCM implications for the Cenozoic record of Antarctic glaciation. Climate Dynamics 6:13–22

    Article  Google Scholar 

  • Oglesby RJ, Saltzman B (1990) Sensitivity of the equilibrium surface temperature of a GCM to systematic changes in atmospheric carbon dioxide. Geophys Res Lett 17:1089–1092

    Google Scholar 

  • Oglesby RJ, Saltzman B (1992) Equilibrium climate statistics of a general circulation model as a function of atmospheric carbon dioxide. Part I. Geographic distributions of primary variables. J Climate 5:66–92

    Google Scholar 

  • Peixoto JP, Oort AH (1992) Physics of climate. American Institute of Physics, New York, p. 520

    Google Scholar 

  • Pollitz FF (1986) Pliocene change in Pacific plate motion. Nature 320:738–741

    Article  Google Scholar 

  • Prell WL, Kutzbach JE (1992) Sensitivity of the Indian monsoon to forcing parameters and implications for its evolution. Nature 360:647–652

    Article  Google Scholar 

  • Ramsay W (1924) The probable solution of the climate problem in geology. Geol Mag 61:152–163

    Google Scholar 

  • Raymo ME (1991) Geochemical evidence supporting T.C. Chamberlin’s theory of glaciation. Geology 19:344–347

    Article  Google Scholar 

  • Raymo ME, Ruddiman WF (1992) Tectonic forcing of late Cenozoic climate. Nature 359:117–122

    Article  Google Scholar 

  • Raymo ME, Ruddiman WF, Froelich PN (1988) Influence of late Cenozoic mountain building on ocean geochemical cycles. Geology 16:649–653

    Article  Google Scholar 

  • Reid JL (1979) On the contribution of the Mediterranean Sea outflow to the Norwgian-Greenland Sea. Deep-Sea Res 26:1199–1223

    Article  Google Scholar 

  • Rind D (1986) The dynamics of warm and cold climates. J Atmos Sci 43:3–24

    Article  Google Scholar 

  • Rind D (1987) Components of the ice age circulation. J Geophys Res 92:4241–4281

    Google Scholar 

  • Rind D (1988) Dependence of warm and cold climate depiction on climate model resolution. J Climate 1:965–997

    Article  Google Scholar 

  • Robinson PL (1973) Palaeoclimatology and continental drift. In: Tarling D, Runcorn S (eds) Implications of continental drift to earth sciences, vol 1. Academic Press, New York, pp 451–476

    Google Scholar 

  • Rooth C (1982) Hydrology and ocean circulation. Prog Oceanography 11:131–149

    Google Scholar 

  • Rubey WW (1951) Geologic history of seawater. Geol Soc Am Bull 62:1111–1148

    Google Scholar 

  • Ruddiman WF, Kutzbach JE (1989) Forcing of late Cenozoic northern hemisphere climate by plateau uplift in southern Asia and the American West. J Geophys Res 94 (18):409–427

    Google Scholar 

  • Ruddiman WF, Kutzbach JE (1990) Late Cenozoic plateau uplift and climate change. Trans R Soc Edinburgh Earth Sci 81:301–314

    Google Scholar 

  • Ruddiman WF, Kutzbach JE (1991a) Plateau uplift and climatic change. Sci Am 264 (3):66–75

    Google Scholar 

  • Ruddiman WF, Kutzbach JE (1991b) Plateaubildung und Klimaänderung. Spektrum Wissenschaften 1991 (5):114–125

    Google Scholar 

  • Ruddiman WF, Raymo ME (1988) Northern hemisphere climate regimes during the past 3 Ma: possible tectonic connections. Philos Trans R Soc London Ser B 318:411–430

    Google Scholar 

  • Ruddiman WF, Raymo ME, McIntyre A (1986) Matuyama 41 000 year cycles: North Atlantic Ocean and northern hemisphere ice sheets. Earth Planet Sci Lett 80:117–129

    Article  Google Scholar 

  • Ruddiman WF, Prell WL, Raymo ME (1989) Late Cenozoic uplift in southern Asia and the American West: rationale for general circulation modeling experiments. J Geophys Res 94 (18):379–391

    Google Scholar 

  • Sarnthein M, Fenner J (1988) Global wind induced change of deep sea sediment budgets, new ocean production and CO2 reservoirs ca. 3.3–2.35 Ma BP. Philos Trans R Soc Lond B 318:487–504

    Google Scholar 

  • Schneider SH, Thompson SL, Barron EJ (1985) Mid-Cretaceous continental surface temperatures: Are high CO2 concentrations needed to simulate above-freezing winter conditions? In: Sundquist ET, Broecker WS (eds) The carbon cycle and atmospheric CO2: natural variations Archaean to present. Geophys Monogr Ser 32:554–560

  • Schönwiese CD (1992) Vulkanismus und Klimageschichte. Umweltwissenschaften Schadstoff-Forschung 4:239–245

    Google Scholar 

  • Scotese CR, Gahagan LM, Larson RL (1988) Plate tectonic reconstructions of the Cretaceous and Cenozoic ocean basins. Tectonophysics 155:27–48

    Google Scholar 

  • Self S, Rampino MR (1988) Do volcanic eruptions affect climate? Earth Space 1:4–7

    Google Scholar 

  • Shackleton NJ, Kennett JP (1975) Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: oxygen and carbon isotope analysis in DSDP sites 277, 279, and 281. In: Kennett JP, Houtz RE et al. (eds) Init Rep Deep-Sea Drilling Project, vol. 29. U.S. Government Printing Office, Washington, D.C., pp 743–755

    Google Scholar 

  • Short DA, Mengel JG, Crowley TJ, Hyde WT, North GR (1991) Filtering of Milankovitch cycles by earth’s geography. Quaternary Res 35:157–173

    Article  Google Scholar 

  • Sigurdsson H (1990a) Assessment of the atmospheric impact of volcanic eruptions. In: Sharpton V, Ward P (eds) Global catastrophe in earth history: an interdisciplinary conference on impacts, volcanism, and mass mortality. Geol Soc Am Spec Pap 247:99–110

  • Sigurdsson H (1990b) Evidence of volcanic loading of the atmosphere and climate response. Global Planet Change 3:277–289

    Article  Google Scholar 

  • Smith AG, Smith DG, Funnell BM (1994) Atlas of Mesozoic and Cenozoic coastlines. Cambridge University Press, Cambridge, p. 99

    Google Scholar 

  • Sundquist ET (1991) Steady- and non-steady carbonate-silicate controls on atmospheric CO2. Quaternary Sci Rev 10:283–296

    Article  Google Scholar 

  • Tang M, Reiter ER (1984) Plateau monsoons of the northern hemisphere: a comparison between North America and Tibet. Monthly Weather Rev 112:617–637

    Article  Google Scholar 

  • Trenberth KE (1983) Interactions between orographically and thermally forced planetary waves. J Atmos Sci 40:1126–1153

    Article  Google Scholar 

  • Trenberth KE, Chen S (1988) Planetary waves kinematically forced by Himalayan orogeny. J Atmos Sci 45:2934–2948

    Google Scholar 

  • Trettin HP (1991) Middle and Late Tertiary tectonic and physiographic developments. In: Trettin H (ed) Geology of the Innuitian orogen and Arctic platform of Canada and Greenland. Geol North Am E:493–496

    Google Scholar 

  • Trewartha GT (1968) An introduction to climate. McGraw-Hill, New York, p. 408

    Google Scholar 

  • Volk T (1987) Feedback between weathering and atmospheric CO2 over the last 100 million years. Am J Sci 287:763–779

    Google Scholar 

  • Walker JC, Hays PB, Kasting JF (1981) A negative feedback mechanism for the long term stabilization of the earth’s surface temperatures. J Geophys Res 86:9776–9782

    Google Scholar 

  • Washington WM, Meehl GA (1983) General circulation model experiments on the climatic effects due to a doubling and quadrupling of carbon dioxide concentrations. J Geophys Res 88:6600–6610

    Google Scholar 

  • Washington WM, Meehl GA (1984) Seasonal cycle experiment on climate sensitivity due to a doubling of CO2 with an atmospheric general circulation model coupled to a single mixed-layer ocean model. J Geophys Res 89:9473–9503

    Google Scholar 

  • Watkins ND, Kennett JP (1971) Antarctic bottom water: major change in velocity during the late Cenozoic between Australia and Antarctica. Science 173:813–818

    Google Scholar 

  • Webb PN, Harwood DM, McKelvey, Mabin CG, Mercer JH (1986) Late Cenozoic tectonic and glacial history of the Transantarctic moutains. Antarctic J 21:99–100

    Google Scholar 

  • Wegener A (1912) Die Entstehung der Kontinente. Geol Rundsch 3:276–292

    Article  Google Scholar 

  • Wegener A (1929) Die Entstehung der Kontinente und Ozeane. Friedrich Vieweg und Sohn, Braunschweig

    Google Scholar 

  • Wells. N. (1986) The Atmosphere and ocean: a physical introduction. Tyler and Francis, London

    Google Scholar 

  • Wilson KM, Pollard D, Hay WW, Thompson SL, Wold CN (1994) General circulation model simulations of Triassic climates: preliminary results. In: Klein GD (ed) Pangaea: paleoclimate, tectonics and sedimentation during accretion, zenith, and breakup of a supercontinent. Geol Soc Am Spec Pap 288:91–116

    Google Scholar 

  • Wise SW, Gombos AM, Muza JP (1985) Cenozoic evolution of polar water mases, southwest Atlantic Ocean. In: Hsü KJ, Weissert H (eds) South Atlantic paleoceanography. Cambridge University Press, Cambridge, pp 283–324

    Google Scholar 

  • Wold CN, Hay WW, Dullo W, Wolf TC, Bruns P (1993) Oligozäne Paläo-Ozeanographie des Grönland-Schottland Rückens. Geowissenschaften 11:353–359

    Google Scholar 

  • Wold CN, Hay WW, Wilson KM (1994) Eine Verbesserte Anpassung von Südamerika an Afrika. Geowissenschaften 12:48–54

    Google Scholar 

  • Woo KS, Anderson TF, Railsback LB, Sandberg PA (1992) Oxygen isotope evidence for high-salinity surface seawater in the Mid-Cretaceous Gulf of Mexico: implications for warm saline deepwater formation. Paleoceanography 7:673–685

    Google Scholar 

  • Woodruff SD, Slutz RJ, Jenne RJ, Steurer PM (1987) A comprehensive ocean-atmosphere data set. Bull Am Meteor Soc 68:1239–1250

    Google Scholar 

  • Yapp CJ, Poths H (1992) Ancient atmospheric CO2 pressures inferred from natural goethites. Nature 355:342–344

    Article  Google Scholar 

  • Zachos JC, Breza JR, Wise SW (1992) Early Oligocene ice-sheet expansion on Antarctica: stable isotope and sedimentological evidence from Kerguelen plateau, southern Indian Ocean. Geology 20:569–573

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hay, W.W. Tectonics and climate. Geol Rundsch 85, 409–437 (1996). https://doi.org/10.1007/BF02369000

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02369000

Key words

Navigation