Skip to main content
Log in

Unidirectional block in a computer model of partially coupled segments of cardiac Purkinje tissue

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The initiation of a reentrant circuit requires a zone of slow conduction and a zone of unidirectional block. This study used computer model conditions under which partial coupling between segments of cardiac Purkinje tissue resulted in unidirectional block. The structure used was one-dimensional and divided into three segments: a middle segment of variable length coupled to two long (semi-infinite in concept) segments. The DiFrancesco-Noble equations represented the ionic currents of the membrane. The results show that the possibility of unidirectional block depends on the size of the middle segment and the coupling resistances between the segments. No combination of coupling resistances allowed unidirectional block for middle segments with a length of two space constants (4 mm) or longer. Unidirectional block occurred for many combinations of coupling resistances as the length of the middle segment decreased to around half a space constant (1 mm). The number of length combinations that caused unidirectional block decreased again as segment length further decreased. These results provide a possible mechanism of unidirectional block for situations where islands of viable tissue are connected through nonviable tissue, such as in a healed myocardial infarction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allessie, M.A.; Bonke, F.I.M.; Schopman, F.J.G. Circus movement in rabbit atrial muscle as a mechanism of tachycardia. II. The role of nonuniform recovery of excitability in the occurrence of unidirectional block, as studied with multiple microelectrodes. Circ. Res. 39:168–177; 1976.

    CAS  PubMed  Google Scholar 

  2. Cabo, C.; Barr, R.C. Propagation model using the DiFrancesco-Noble equations: Comparison to reported experimental results. Med. Biol. Eng. Comp. 30:292–302; 1992.

    CAS  Google Scholar 

  3. Cabo, C.; Barr, R.C. Reflection after delayed excitation in a computer model of a single fiber. Circ. Res. 71:260–270; 1992.

    CAS  PubMed  Google Scholar 

  4. Chapman, R.A.; Fry, C.H. An analysis of the cable properties of frog ventricular myocardium. J. Physiol. 283:263–282; 1978.

    CAS  PubMed  Google Scholar 

  5. Cranefield, P.F. The conduction of the cardiac impulse. Mount Kisco, NY: Futura Publishing Company, Inc; 1975.

    Google Scholar 

  6. Cranefield, P.F.; Klein, H.O.; Hoffman, B.F. Conduction of the cardiac impulse. I. Delay, block, and one-way block in depressed Purkinje fibers. Circ. Res. 28:199–219; 1971.

    CAS  PubMed  Google Scholar 

  7. Cranefield, P.F.; Wit, A.L.; Hoffman, B.F. Genesis of cardiac arrhythmias. Circulation 47:190–204; 1973.

    CAS  PubMed  Google Scholar 

  8. DiFrancesco, D.; Noble, D. A model of cardiac electrical activity incorporating ionic pumps and concentration changes. Phil. Trans. R. Soc. B307:353–398; 1985.

    CAS  PubMed  Google Scholar 

  9. Downar, E.; Waxman, M.B. Depressed conduction and unidirectional block in Purkinje fibers. In: Wellens, H.J.J.; Lie, K.I.; Janse, M.J., eds. The conduction system of the heart. Philadelphia: Lea & Febiger; 1976: pp. 393–409.

    Google Scholar 

  10. Fenoglio, J.J., Jr.; Pham, T.D.; Harken, A.H.; Horowitz, L.N.; Josephson, M.E.; Wit, A.L. Recurrent sustained ventricular tachycardia: Structure and ultrastructure of subendocardial regions in which tachycardia originates. Circulation 68:518–533; 1983.

    PubMed  Google Scholar 

  11. Fozzard, H.A. Membrane capacity of the cardiac Purkinje fibre. J. Physiol. 182:255–267; 1966.

    CAS  PubMed  Google Scholar 

  12. Fozzard, H.A. Conduction of the action potential. In: Berne, R.M.; Sperelakis, N.; Geiger, S.R., eds. Handbook of physiology: The cardiovascular system. Bethesda, MD: American Physiological Society; 1979: pp 335–356.

    Google Scholar 

  13. Fozzard, H.A.; Schoenberg, M. Strength-duration curves in cardiac purkinje fibres: Effects of liminal length and charge distribution. J. Physiol. 226:593–618; 1972.

    CAS  PubMed  Google Scholar 

  14. Freygang, W.H.; Trautwein, W. The structural implications of the linear electrical properties of cardiac Purkinje strands. J. Gen. Physiol. 55:524–547; 1970.

    Article  CAS  PubMed  Google Scholar 

  15. Friedman, P.L.; Fenoglio, J.J., Jr.; Wit, A.L. Time course for reversal of electrophysiological and ultrastructural abnormalities in subendocardial Purkinje fibers surviving extensive myocardial infarction in dogs. Circ. Res. 36:127–144; 1975.

    CAS  PubMed  Google Scholar 

  16. Friedman, P.L.; Stewart, J.R.; Fenoglio, J.J., Jr.; Wit, A.L. Survival of subendocardial Purkinje fibers after extensive myocardial infarctions in dogs.In vitro andin vivo correlations. Circ. Res. 33:597–611; 1973.

    CAS  PubMed  Google Scholar 

  17. Friedman, P.L.; Stewart, J.R.; Wit, A.L. Spontaneous and induced cardiac arrhythmias in subendocardial Purkinje fibers surviving extensive myocardial infarction in dogs. Circ. Res. 33:612–626; 1973.

    CAS  PubMed  Google Scholar 

  18. Gardner, P.I.; Ursell, P.C.; Fenoglio, J.J., Jr.; Wit, A.L. Electrophysiologic and anatomic basis for fractionated electrograms recorded from healed myocardial infarcts. Circulation 72:596–611; 1985.

    CAS  PubMed  Google Scholar 

  19. Han, J.; Moe, G.K. Nonuniform recovery of excitability in ventricular muscle. Circ. Res. 14:44–60; 1964.

    CAS  PubMed  Google Scholar 

  20. Henriquez, C.S.; Plonsey, R. Effect of resistive discontinuities on waveshape and velocity in a single fiber. Med. Biol. Eng. Comp. 25:428–438; 1987.

    CAS  Google Scholar 

  21. Heppner, D.B.; Plonsey, R. Simulation of electrical interaction of cardiac cells. Biophys. J. 10:1057–1075; 1970.

    CAS  PubMed  Google Scholar 

  22. Jack, J.J.B.; Noble, D.; Tsien, R.W. Electric current flow in excitable cells. Oxford, UK: Clarendon; 1975.

    Google Scholar 

  23. Jalife, J.; Moe, G.K. Excitation, conduction, and reflection of impulses in isolated bovine and canine Purkinje fibers. Circ. Res. 49:233–247; 1981.

    CAS  PubMed  Google Scholar 

  24. Janse, M.J. Reentry rhythms. In: Fozzard, H.A.; Haber, E.; Jennings, R.B. eds. The heart and cardiovascular system. New York: Raven Press; 1986: pp. 1203–1238.

    Google Scholar 

  25. Janse, M.J.; Wit, A.L. Electrophysiological mechanisms of ventricular arrhythmias resulting from myocardial ischemia and infarction. Physiol. Rev. 69:1049–1169; 1989.

    CAS  PubMed  Google Scholar 

  26. Josephson, M.E.; Harken, A.H.; Horowitz, L.N. Endocardial excision: A new surgical technique for the treatment of recurrent ventricular tachycardia. Circulation 60:1430–1439; 1979.

    CAS  PubMed  Google Scholar 

  27. Josephson, M.E.; Horowitz, L.N.; Farshidi, A.; Spear, J.F.; Kastor, J.A.; Moore, E.N. Recurrent sustained ventricular tachycardia. 2. Endocardial mapping. Circulation 57:440–447; 1978.

    CAS  PubMed  Google Scholar 

  28. Joyner, R.W. Mechanisms of unidirectional block in cardiac tissues. Biophys. J. 35:113–125; 1981.

    CAS  PubMed  Google Scholar 

  29. Joyner, R.W.; Overholt, E.D.; Ramza, B.; Veenstra, R.D. Propagation through electrically coupled cells: two inhomogeneously coupled cardiac tissue layers. Am. J. Physiol. 247:H596-H609; 1984.

    CAS  PubMed  Google Scholar 

  30. Joyner, R.W.; Picote, J.; Veenstra, R.; Rawling, D. Propagation through electrically coupled cells. Effects of regional changes in membrane properties. Circ. Res. 53:526–534; 1983.

    CAS  PubMed  Google Scholar 

  31. Joyner, R.W.; Veenstra, R.; Rawling, D.; Chorro, A. Propagation through electrically coupled cells. Effects of a resistive barrier. Biophys. J. 45:1017–1025; 1984.

    CAS  PubMed  Google Scholar 

  32. Kienzle, M.G.; Tan, R.C.; Ramza, B.M.; Young, M.-L.; Joyner, R.W. Alterations in endocardial activation of the canine papillary muscle early and late after myocardial infarction. Circulation 76:860–874; 1987.

    CAS  PubMed  Google Scholar 

  33. Kleber, A.G., Riegger, C.B.; Janse, M.J. Electrical uncoupling and increase of extracellular resistance after induction of ischemia in isolated, arterially perfused rabbit papillary muscle. Circ. Res. 61:271–279; 1987.

    CAS  PubMed  Google Scholar 

  34. la Fuente, D.; Sasyniuk, B.; Moe, G.K. Conduction through a narrow isthmus in isolated canine atrial tissue. A model of the W-P-W syndrome. Circulation 44:803–809; 1971.

    PubMed  Google Scholar 

  35. Lazzara, R.; El-Sherif, N.; Scherlag, B.J. Electrophysiological properties of canine Purkinje cells in one-day myocardial infarction. Circ. Res. 33:722–734; 1973.

    CAS  PubMed  Google Scholar 

  36. Lazzara, R.; El-Sherif, N.; Scherlag, B.J. Early and late effects of coronary artery occlusion on canine Purkinje fibers. Circ. Res. 35:391–399; 1974.

    CAS  PubMed  Google Scholar 

  37. Lesh, M.D.; Anacker, S.; Goel, A. Fractal uncoupling, disparate activation and fractionated electrograms in a model of nonuniform anisotropy. Circulation 84:II-669; 1991 (abstract).

    Google Scholar 

  38. Loewenstein, W.R. Junctional intercellular communication: The cell-to-cell membrane channel. Physiol. Rev. 61:829–913; 1981.

    CAS  PubMed  Google Scholar 

  39. Mendez, C.; Mueller, W.J.; Merideth, J.; Moe, G.K. Interaction of transmembrane potentials in canine Purkinje fibers and at fiber-muscle junctions. Circ. Res. 24:361–372; 1969.

    CAS  PubMed  Google Scholar 

  40. Mendez, C.; Mueller, W.J.; Urguiaga, X. Propagation of impulses across the Purkinje fiber-muscle junctions in the dog heart. Circ. Res. 26:135–150; 1970.

    CAS  PubMed  Google Scholar 

  41. Michelson, E.L.; Spear, J.F.; Moore, E.N. Initiation of sustained ventricular tachyarrhythmias in a canine model of chronic myocardial infarction: importance of the site of stimulation. Circulation 63:776–784; 1981.

    CAS  PubMed  Google Scholar 

  42. Mines, G.R. On dynamic equilibrium in the heart. J. Physiol. 46:349–382; 1913.

    Google Scholar 

  43. Overholt, E.D.; Ioyner, R.W.; Veenstra, R.D.; Rawling, D.; Wiedmann, R. Unidirectional block between Purkinje and ventricular layers of papillary muscles. Am. J. Physiol. 247:H584-H595; 1984.

    CAS  PubMed  Google Scholar 

  44. Plonsey, R.; Barr, R.C. Interstitial potentials and their change with depth into cardiac tissue. Biophys. J. 51:547–555; 1987.

    CAS  PubMed  Google Scholar 

  45. Plonsey, R.; Barr, R.C. Bioelectricity: A quantitative approach. New York: Plenum Press; 1988.

    Google Scholar 

  46. Plonsey, R.; Henriquez, C.S.; Trayanova, N. Extracellular (volume conductor) effect on adjoining cardiac muscle electrophysiology. Med. Biol. Eng. Comp. 26:126–129; 1988.

    CAS  Google Scholar 

  47. Quan, W.; Rudy, Y. Unidirectional block and reentry of cardiac excitation: A model study. Circ. Res. 66:367–382; 1990.

    CAS  PubMed  Google Scholar 

  48. Rudy, Y.; Quan, W. A model study of the effects of the discrete cellular structure on electrical propagation in cardiac tissue. Circ. Res. 61:815–823; 1987.

    CAS  PubMed  Google Scholar 

  49. Rudy, Y.; Quan, W. Propagation delays across cardiac gap junctions and their reflection in extracellular potentials: a simulation study. J. Cardiovasc. Electrophysiol. 2:299–315; 1991.

    Google Scholar 

  50. Schmitt, F.O.; Erlanger, J. Directional differences in the conduction of the impulse through heart muscle and their possible relation to extrasystolic and fibrillary contractions. Am. J. Physiol. 87:326–347; 1928.

    Google Scholar 

  51. Spach, M.S. The discontinuous nature of electrical propagation in cardiac muscle. Consideration of a quantitative model incorporating the membrane jonic properties and structural complexities (ALZA lecture). Ann. Biomed. Eng. 11:209–261; 1983.

    CAS  PubMed  Google Scholar 

  52. Spach, M.S.; Kootsey, J.M. The nature of electrical propagation in cardiac muscle. Am. J. Physiol. 244:H3-H22; 1982.

    Google Scholar 

  53. Spach, M.S.; Miller, W.T., III; Dolber, P.C.; Kootsey, J.M.; Sommer, J.R.; Mosher, C.E., Jr. The functional role of structural complexities in the propagation of depolarization in the atrium of the dog. Cardiac conduction disturbances due to discontinuities of effective axial resistivity. Circ. Res. 50:175–191; 1982.

    CAS  PubMed  Google Scholar 

  54. Spach, M.S.; Miller, W.T., III; Geselowitz, D.B.; Barr, R.C.; Kootsey, J.M.; Johnson, E.A. The discontinuous nature of propagation in normal canine cardiac muscle. Evidence of recurrent discontinuities of intracellular resistance that affect the membrane currents. Circ. Res. 48:39–54; 1981.

    CAS  PubMed  Google Scholar 

  55. Spear, J.F.; Michelson, E.L.; Moore, E.N. Cellular electrophysiologic characteristics of chronically infarcted myocardium in dogs susceptible to sustained ventricular tachyarrhythmias. J. Am. Coll. Cardiol. 1:1099–1110; 1983.

    CAS  PubMed  Google Scholar 

  56. Spear, J.F.; Michelson, E.L.; Moore, E.N. Reduced space constant in slowly conducting regions of chronically infarcted canine myocardium. Circ. Res. 53:176–185; 1983.

    CAS  PubMed  Google Scholar 

  57. van Capelle, F.J.L.; Durrer, D. Computer simulation of arrhythmias in a network of coupled excitable elements. Circ. Res. 47:454–466; 1980.

    PubMed  Google Scholar 

  58. van Capelle, F.J.L.; Janse, M.J. Influence of geometry on the shape of the propagated action potential. In: Wellens, H.J.J.; Lie, K.I.; Janse, M.J., eds. The conduction system of the heart. Philadelphia: Lea & Febiger; 1976; pp. 316–335.

    Google Scholar 

  59. Watanabe, Y. Reassessment of parasystole. Am. Heart J. 81:451–466; 1971.

    Article  CAS  PubMed  Google Scholar 

  60. Weingart, R. Electrical properties of the nexal membrane studied in rat ventricular cell pairs. J. Physiol. 370:267–284; 1986.

    CAS  PubMed  Google Scholar 

  61. Wennemark, J.R.; Ruesta, V.J.; Brody, D.A. Microelectrode study of delayed conduction in the canine right bundle branch. Circ. Res. 23:753–769; 1968.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cabo, C., Barr, R.C. Unidirectional block in a computer model of partially coupled segments of cardiac Purkinje tissue. Ann Biomed Eng 21, 633–644 (1993). https://doi.org/10.1007/BF02368643

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368643

Keywords

Navigation