Skip to main content
Log in

Multiscale Finite Element Modeling of Left Ventricular Growth in Simulations of Valve Disease

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Multiscale models of the cardiovascular system are emerging as effective tools for investigating the mechanisms that drive ventricular growth and remodeling. These models can predict how molecular-level mechanisms impact organ-level structure and function and could provide new insights that help improve patient care. MyoFE is a multiscale computer framework that bridges molecular and organ-level mechanisms in a finite element model of the left ventricle that is coupled with the systemic circulation. In this study, we extend MyoFE to include a growth algorithm, based on volumetric growth theory, to simulate concentric growth (wall thickening/thinning) and eccentric growth (chamber dilation/constriction) in response to valvular diseases. Specifically in our model, concentric growth is controlled by time-averaged total stress along the fiber direction over a cardiac cycle while eccentric growth responds to time-averaged intracellular myofiber passive stress over a cardiac cycle. The new framework correctly predicted different forms of growth in response to two types of valvular diseases, namely aortic stenosis and mitral regurgitation. Furthermore, the model predicted that LV size and function are nearly restored (reversal of growth) when the disease-mimicking perturbation was removed in the simulations for each valvular disorder. In conclusion, the simulations suggest that time-averaged total stress along the fiber direction and time-averaged intracellular myofiber passive stress can be used to drive concentric and eccentric growth in simulations of valve disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Frey, N., and E. N. Olson. Cardiac hypertrophy: the good, the bad, and the ugly. Annu. Rev. Physiol. 65:45–79, 2003. https://doi.org/10.1146/annurev.physiol.65.092101.142243.

    Article  CAS  PubMed  Google Scholar 

  2. Pitoulis, F. G., and C. M. Terracciano. Heart plasticity in response to pressure- and volume-overload: a review of findings in compensated and decompensated phenotypes. Front Physiol. 11:92, 2020. https://doi.org/10.3389/fphys.2020.00092.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hill, J. A., and E. N. Olson. Cardiac plasticity. N. Engl. J. Med. 358(13):1370–1380, 2008. https://doi.org/10.1056/NEJMra072139.

    Article  CAS  PubMed  Google Scholar 

  4. Shimizu, I., and T. Minamino. Physiological and pathological cardiac hypertrophy. J. Mol. Cell Cardiol. 97:245–262, 2016. https://doi.org/10.1016/j.yjmcc.2016.06.001.

    Article  CAS  PubMed  Google Scholar 

  5. Nakamura, M., and J. Sadoshima. Mechanisms of physiological and pathological cardiac hypertrophy. Nat. Rev. Cardiol. 15(7):387–407, 2018. https://doi.org/10.1038/s41569-018-0007-y.

    Article  CAS  PubMed  Google Scholar 

  6. Rausch, M. K., A. Dam, S. Goktepe, O. J. Abilez, and E. Kuhl. Computational modeling of growth: systemic and pulmonary hypertension in the heart. Biomech. Model Mechanobiol. 10(6):799–811, 2011. https://doi.org/10.1007/s10237-010-0275-x.

    Article  CAS  PubMed  Google Scholar 

  7. Klepach, D., L. C. Lee, J. F. Wenk, M. B. Ratcliffe, T. I. Zohdi, J. A. Navia, et al. Growth and remodeling of the left ventricle: a case study of myocardial infarction and surgical ventricular restoration. Mech. Res. Commun. 42:134–141, 2012. https://doi.org/10.1016/j.mechrescom.2012.03.005.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Guterl, K. A., C. R. Haggart, P. M. Janssen, and J. W. Holmes. Isometric contraction induces rapid myocyte remodeling in cultured rat right ventricular papillary muscles. Am. J. Physiol. Heart Circ. Physiol. 293(6):H3707–H3712, 2007. https://doi.org/10.1152/ajpheart.00296.2007.

    Article  CAS  PubMed  Google Scholar 

  9. Kerckhoffs, R. C., J. Omens, and A. D. McCulloch. A single strain-based growth law predicts concentric and eccentric cardiac growth during pressure and volume overload. Mech. Res. Commun. 42:40–50, 2012. https://doi.org/10.1016/j.mechrescom.2011.11.004.

    Article  PubMed  Google Scholar 

  10. Witzenburg, C. M., and J. W. Holmes. Predicting the time course of ventricular dilation and thickening using a rapid compartmental model. J Cardiovasc. Transl. Res. 11(2):109–122, 2018. https://doi.org/10.1007/s12265-018-9793-1.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Arts, T., J. Lumens, W. Kroon, and T. Delhaas. Control of whole heart geometry by intramyocardial mechano-feedback: a model study. PLoS Comput. Biol.8(2):e1002369, 2012. https://doi.org/10.1371/journal.pcbi.1002369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Goktepe, S., O. J. Abilez, K. K. Parker, and E. Kuhl. A multiscale model for eccentric and concentric cardiac growth through sarcomerogenesis. J. Theoret. Biol. 265(3):433–442, 2010. https://doi.org/10.1016/j.jtbi.2010.04.023.

    Article  Google Scholar 

  13. Lin, I. E., and L. A. Taber. A model for stress-induced growth in the developing heart. J. Biomech. Eng. 117(3):343–349, 1995. https://doi.org/10.1115/1.2794190.

    Article  CAS  PubMed  Google Scholar 

  14. Kroon, W., T. Delhaas, T. Arts, and P. Bovendeerd. Computational modeling of volumetric soft tissue growth: application to the cardiac left ventricle. Biomech. Model Mechanobiol. 8(4):301–309, 2009. https://doi.org/10.1007/s10237-008-0136-z.

    Article  PubMed  Google Scholar 

  15. Lee, L. C., M. Genet, G. Acevedo-Bolton, K. Ordovas, J. M. Guccione, and E. Kuhl. A computational model that predicts reverse growth in response to mechanical unloading. Biomech. Model Mechanobiol. 14(2):217–229, 2015. https://doi.org/10.1007/s10237-014-0598-0.

    Article  CAS  PubMed  Google Scholar 

  16. Sharifi, H., C. K. Mann, A. L. Rockward, M. Mehri, J. Mojumder, L. C. Lee, et al. Multiscale simulations of left ventricular growth and remodeling. Biophys. Rev. 13(5):729–746, 2021. https://doi.org/10.1007/s12551-021-00826-5.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lee, L. C., J. Sundnes, M. Genet, J. F. Wenk, and S. T. Wall. An integrated electromechanical-growth heart model for simulating cardiac therapies. Biomech. Model Mechanobiol. 15(4):791–803, 2016. https://doi.org/10.1007/s10237-015-0723-8.

    Article  PubMed  Google Scholar 

  18. Arumugam, J., J. Mojumder, G. Kassab, and L. C. Lee. Model of anisotropic reverse cardiac growth in mechanical dyssynchrony. Sci. Rep. 9(1):12670, 2019. https://doi.org/10.1038/s41598-019-48670-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Arts, T., T. Delhaas, P. Bovendeerd, X. Verbeek, and F. W. Prinzen. Adaptation to mechanical load determines shape and properties of heart and circulation: the CircAdapt model. Am. J. Physiol Heart Circ. Physiol. 288(4):H1943–H1954, 2005. https://doi.org/10.1152/ajpheart.00444.2004.

    Article  CAS  PubMed  Google Scholar 

  20. Guccione, J. M., and A. D. McCulloch. Mechanics of active contraction in cardiac muscle: Part I—constitutive relations for fiber stress that describe deactivation. J Biomech Eng. 115(1):72–81, 1993. https://doi.org/10.1115/1.2895473.

    Article  CAS  PubMed  Google Scholar 

  21. Guccione, J. M., L. K. Waldman, and A. D. McCulloch. Mechanics of active contraction in cardiac muscle: Part II—cylindrical models of the systolic left ventricle. J. Biomech. Eng. 115(1):82–90, 1993. https://doi.org/10.1115/1.2895474.

    Article  CAS  PubMed  Google Scholar 

  22. Estrada, A. C., K. Yoshida, J. J. Saucerman, and J. W. Holmes. A multiscale model of cardiac concentric hypertrophy incorporating both mechanical and hormonal drivers of growth. Biomech. Model Mechanobiol. 20(1):293–307, 2021. https://doi.org/10.1007/s10237-020-01385-6.

    Article  PubMed  Google Scholar 

  23. Beyar, R., and S. Sideman. Model for left ventricular contraction combining the force length velocity relationship with the time varying elastance theory. Biophys. J. 45(6):1167–1177, 1984. https://doi.org/10.1016/S0006-3495(84)84265-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Santamore, W. P., and D. Burkhoff. Hemodynamic consequences of ventricular interaction as assessed by model analysis. Am. J. Physiol. 260(1 Pt 2):H146–H157, 1991. https://doi.org/10.1152/ajpheart.1991.260.1.H146.

    Article  CAS  PubMed  Google Scholar 

  25. Rondanina, E., and P. H. M. Bovendeerd. Evaluation of stimulus-effect relations in left ventricular growth using a simple multiscale model. Biomech. Model Mechanobiol. 19(1):263–273, 2020. https://doi.org/10.1007/s10237-019-01209-2.

    Article  PubMed  Google Scholar 

  26. Rondanina, E., and P. H. M. Bovendeerd. Stimulus-effect relations for left ventricular growth obtained with a simple multi-scale model: the influence of hemodynamic feedback. Biomech. Model Mechanobiol. 19(6):2111–2126, 2020. https://doi.org/10.1007/s10237-020-01327-2.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bovendeerd, P. H., P. Borsje, T. Arts, and F. N. van De Vosse. Dependence of intramyocardial pressure and coronary flow on ventricular loading and contractility: a model study. Ann. Biomed. Eng. 34(12):1833–1845, 2006. https://doi.org/10.1007/s10439-006-9189-2.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Huxley, A. F. Muscular contraction. J. Physiol. 243(1):1–43, 1974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Freiburg, A., K. Trombitas, W. Hell, O. Cazorla, F. Fougerousse, T. Centner, et al. Series of exon-skipping events in the elastic spring region of titin as the structural basis for myofibrillar elastic diversity. Circ. Res. 86(11):1114–1121, 2000. https://doi.org/10.1161/01.res.86.11.1114.

    Article  CAS  PubMed  Google Scholar 

  30. Davis, J., L. C. Davis, R. N. Correll, C. A. Makarewich, J. A. Schwanekamp, F. Moussavi-Harami, et al. A tension-based model distinguishes hypertrophic versus dilated cardiomyopathy. Cell. 165(5):1147–1159, 2016. https://doi.org/10.1016/j.cell.2016.04.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shavik, S. M., S. Wall, J. Sundnes, J. M. Guccione, P. Sengupta, S. D. Solomon, et al. Computational modeling studies of the roles of left ventricular geometry, afterload, and muscle contractility on myocardial strains in heart failure with preserved ejection fraction. J. Cardiovasc. Transl. Res. 14(6):1131–1145, 2021. https://doi.org/10.1007/s12265-021-10130-y.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bayer, J. D., R. C. Blake, G. Plank, and N. A. Trayanova. A novel rule-based algorithm for assigning myocardial fiber orientation to computational heart models. Ann. Biomed. Eng. 40(10):2243–2254, 2012. https://doi.org/10.1007/s10439-012-0593-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Alnaes, M. S., J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M. E. Rognes, and G. N. Wells. The FEniCS project version 1.5. Numer. Softw Arch. 2015. https://doi.org/10.11588/ans.2015.100.20553.

    Article  Google Scholar 

  34. Finsberg, H., C. Xi, J. L. Tan, L. Zhong, M. Genet, J. Sundnes, et al. Efficient estimation of personalized biventricular mechanical function employing gradient-based optimization. Int. J. Numer. Method Biomed. Eng.34(7):e2982, 2018. https://doi.org/10.1002/cnm.2982.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Boffi, D., F. Brezzi, and M. Fortin. Mixed Finite Element Methods and Applications. Berlin: Springer, 2013.

    Book  Google Scholar 

  36. Guccione, J. M., A. D. McCulloch, and L. K. Waldman. Passive material properties of intact ventricular myocardium determined from a cylindrical model. J. Biomech. Eng. 113(1):42–55, 1991. https://doi.org/10.1115/1.2894084.

    Article  CAS  PubMed  Google Scholar 

  37. Xi, C., G. S. Kassab, and L. C. Lee. Microstructure-based finite element model of left ventricle passive inflation. Acta Biomater. 90:241–253, 2019. https://doi.org/10.1016/j.actbio.2019.04.016.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Campbell, K. S. Dynamic coupling of regulated binding sites and cycling myosin heads in striated muscle. J. Gen. Physiol. 143(3):387–399, 2014. https://doi.org/10.1085/jgp.201311078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sharifi, H., L. C. Lee, K. S. Campbell, and J. F. Wenk. A multiscale finite element model of left ventricular mechanics incorporating baroreflex regulation. Comput. Biol. Med.168:107690, 2024. https://doi.org/10.1016/j.compbiomed.2023.107690.

    Article  CAS  PubMed  Google Scholar 

  40. Sharifi, H., C. K. Mann, J. F. Wenk, and K. S. Campbell. A multiscale model of the cardiovascular system that regulates arterial pressure via closed loop baroreflex control of chronotropism, cell-level contractility, and vascular tone. Biomech. Model Mechanobiol. 21(6):1903–1917, 2022. https://doi.org/10.1007/s10237-022-01628-8.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Rodriguez, E. K., A. Hoger, and A. D. McCulloch. Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27(4):455–467, 1994. https://doi.org/10.1016/0021-9290(94)90021-3.

    Article  CAS  PubMed  Google Scholar 

  42. Kondaurov, V. I., and L. V. Nikitin. Finite strains of viscoelastic muscle tissue. Appl. Math. Mech. 51(3):346–353, 1987. https://doi.org/10.1016/0021-8928(87)90111-0.

    Article  Google Scholar 

  43. Takamizawa, K., and K. Hayashi. Strain energy density function and uniform strain hypothesis for arterial mechanics. Biomechanics. 20(1):7–17, 1987. https://doi.org/10.1016/0021-9290(87)90262-4.

    Article  CAS  Google Scholar 

  44. Takamizawa, K., and T. Matsuda. Kinematics for bodies undergoing residual stress and its applications to the left ventricle. Appl. Mech. 57(2):321–329, 1990. https://doi.org/10.1115/1.2891992.

    Article  Google Scholar 

  45. Takamizawa, K. Stress-free configuration of a thick-walled cylindrical model of the artery: an application of riemann geometry to the biomechanics of soft tissues. Appl. Mech. 58(3):840–842, 1991. https://doi.org/10.1115/1.2897272.

    Article  Google Scholar 

  46. Sadik, S., and A. Yavari. On the origins of the idea of the multiplicative decomposition of the deformation gradient. Math. Mech. Solids. 22(4):771–772, 2015. https://doi.org/10.1177/1081286515612280.

    Article  Google Scholar 

  47. Walt, S. V. D., S. C. Colbert, and G. Varoquaux. The NumPy Array: a structure for efficient numerical computation. Comput. Sci. Eng. 13:22–30, 2011. https://doi.org/10.1109/MCSE.2011.37.

    Article  Google Scholar 

  48. Virtanen, P., R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods. 17(3):261–272, 2020. https://doi.org/10.1038/s41592-019-0686-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. al. RJe. pandas-dev/pandas: Pandas 1.3.2. 2021.

  50. Petersen, S. E., N. Aung, M. M. Sanghvi, F. Zemrak, K. Fung, J. M. Paiva, et al. Reference ranges for cardiac structure and function using cardiovascular magnetic resonance (CMR) in Caucasians from the UK Biobank population cohort. J. Cardiovasc. Magn. Reson. 19(1):18, 2017. https://doi.org/10.1186/s12968-017-0327-9.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Maceira, A. M., S. K. Prasad, M. Khan, and D. J. Pennell. Normalized left ventricular systolic and diastolic function by steady state free precession cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 8(3):417–426, 2006. https://doi.org/10.1080/10976640600572889.

    Article  CAS  PubMed  Google Scholar 

  52. Otto, C. M., R. A. Nishimura, R. O. Bonow, B. A. Carabello, J. P. Erwin 3rd., F. Gentile, et al. 2020 ACC/AHA guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 143(5):e72–e227, 2021. https://doi.org/10.1161/CIR.0000000000000923.

    Article  PubMed  Google Scholar 

  53. Chin, C. W., H. J. Khaw, E. Luo, S. Tan, A. C. White, D. E. Newby, et al. Echocardiography underestimates stroke volume and aortic valve area: implications for patients with small-area low-gradient aortic stenosis. Can. J. Cardiol. 30(9):1064–1072, 2014. https://doi.org/10.1016/j.cjca.2014.04.021.

    Article  PubMed  Google Scholar 

  54. Chin, C. W. L., R. J. Everett, J. Kwiecinski, A. T. Vesey, E. Yeung, G. Esson, et al. Myocardial fibrosis and cardiac decompensation in aortic stenosis. JACC Cardiovasc. Imaging. 10(11):1320–1333, 2017. https://doi.org/10.1016/j.jcmg.2016.10.007.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Luszczak, J., M. Olszowska, S. Drapisz, W. Plazak, I. Karch, M. Komar, et al. Assessment of left ventricle function in patients with symptomatic and asymptomatic aortic stenosis by 2-dimensional speckle-tracking imaging. Med. Sci. Monit. 18(12):MT91-6, 2012. https://doi.org/10.12659/msm.883587.

    Article  PubMed  Google Scholar 

  56. Everett, R. J., T. A. Treibel, M. Fukui, H. Lee, M. Rigolli, A. Singh, et al. Extracellular myocardial volume in patients with aortic stenosis. J. Am. Coll. Cardiol. 75(3):304–316, 2020. https://doi.org/10.1016/j.jacc.2019.11.032.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Spath, N. B., M. Gomez, R. J. Everett, S. Semple, C. W. L. Chin, A. C. White, et al. Global longitudinal strain analysis using cardiac mri in aortic stenosis: comparison with left ventricular remodeling, myocardial fibrosis, and 2-year clinical outcomes. Radiol. Cardiothorac. Imaging.1(4):e190027, 2019. https://doi.org/10.1148/ryct.2019190027.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lyon, R. C., F. Zanella, J. H. Omens, and F. Sheikh. Mechanotransduction in cardiac hypertrophy and failure. Circ. Res. 116(8):1462–1476, 2015. https://doi.org/10.1161/CIRCRESAHA.116.304937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Knoll, R., M. Hoshijima, H. M. Hoffman, V. Person, I. Lorenzen-Schmidt, M. L. Bang, et al. The cardiac mechanical stretch sensor machinery involves a Z disc complex that is defective in a subset of human dilated cardiomyopathy. Cell. 111(7):943–955, 2002. https://doi.org/10.1016/s0092-8674(02)01226-6.

    Article  CAS  PubMed  Google Scholar 

  60. Edwards, N. C., W. E. Moody, M. Yuan, P. Weale, D. Neal, J. N. Townend, et al. Quantification of left ventricular interstitial fibrosis in asymptomatic chronic primary degenerative mitral regurgitation. Circ. Cardiovasc. Imaging. 7(6):946–953, 2014. https://doi.org/10.1161/CIRCIMAGING.114.002397.

    Article  PubMed  Google Scholar 

  61. Schiros, C. G., L. J. Dell’Italia, J. D. Gladden, D. Clark 3rd., I. Aban, H. Gupta, et al. Magnetic resonance imaging with 3-dimensional analysis of left ventricular remodeling in isolated mitral regurgitation: implications beyond dimensions. Circulation. 125(19):2334–2342, 2012. https://doi.org/10.1161/CIRCULATIONAHA.111.073239.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Seldrum, S., C. de Meester, S. Pierard, A. Pasquet, S. Lazam, J. Boulif, et al. Assessment of left ventricular reverse remodeling by cardiac MRI in patients undergoing repair surgery for severe aortic or mitral regurgitation. J. Cardiothorac. Vasc. Anesth. 33(7):1901–1911, 2019. https://doi.org/10.1053/j.jvca.2018.11.013.

    Article  PubMed  Google Scholar 

  63. Badke, F. R., and J. W. Covell. Early changes in left ventricular regional dimensions and function during chronic volume overloading in the conscious dog. Circ. Res. 45(3):420–428, 1979. https://doi.org/10.1161/01.res.45.3.420.

    Article  CAS  PubMed  Google Scholar 

  64. Park, K., T. H. Park, Y. S. Jo, Y. R. Cho, J. S. Park, M. H. Kim, et al. Prognostic effect of increased left ventricular wall thickness in severe aortic stenosis. Cardiovasc. Ultrasound. 19(1):5, 2021. https://doi.org/10.1186/s12947-020-00234-x.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Barone-Rochette, G., S. Pierard, S. Seldrum, C. de Meester Ravenstein, J. Melchior, F. Maes, et al. Aortic valve area, stroke volume, left ventricular hypertrophy, remodeling, and fibrosis in aortic stenosis assessed by cardiac magnetic resonance imaging: comparison between high and low gradient and normal and low flow aortic stenosis. Circ. Cardiovasc. Imaging. 6(6):1009–1017, 2013. https://doi.org/10.1161/CIRCIMAGING.113.000515.

    Article  PubMed  Google Scholar 

  66. Huxley, A. F. Muscle structure and theories of contraction. Prog. Biophys. Biophys. Chem. 7:255–318, 1957.

    Article  CAS  PubMed  Google Scholar 

  67. Yoshida, K., and J. W. Holmes. Computational models of cardiac hypertrophy. Prog. Biophys. Mol. Biol. 159:75–85, 2021. https://doi.org/10.1016/j.pbiomolbio.2020.07.001.

    Article  PubMed  Google Scholar 

  68. Yoshida, K., A. D. McCulloch, J. H. Omens, and J. W. Holmes. Predictions of hypertrophy and its regression in response to pressure overload. Biomech. Model Mechanobiol. 19(3):1079–1089, 2020. https://doi.org/10.1007/s10237-019-01271-w.

    Article  PubMed  Google Scholar 

  69. Witzenburg, C. M., and J. W. Holmes. A comparison of phenomenologic growth laws for myocardial hypertrophy. J. Elast. 129(1–2):257–281, 2017. https://doi.org/10.1007/s10659-017-9631-8.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Oomen, P. J. A., T. N. Phung, S. H. Weinberg, K. C. Bilchick, and J. W. Holmes. A rapid electromechanical model to predict reverse remodeling following cardiac resynchronization therapy. Biomech. Model Mechanobiol. 21(1):231–247, 2022. https://doi.org/10.1007/s10237-021-01532-7.

    Article  PubMed  Google Scholar 

  71. Walther, T., A. Schubert, V. Falk, C. Binner, C. Walther, N. Doll, et al. Left ventricular reverse remodeling after surgical therapy for aortic stenosis: correlation to Renin-Angiotensin system gene expression. Circulation. 106(12 Suppl 1):I23–I26, 2002.

    PubMed  Google Scholar 

  72. Giannini, C., A. S. Petronio, M. De Carlo, F. Guarracino, L. Conte, F. Fiorelli, et al. Integrated reverse left and right ventricular remodelling after MitraClip implantation in functional mitral regurgitation: an echocardiographic study. Eur. Heart J. Cardiovasc. Imaging. 15(1):95–103, 2014. https://doi.org/10.1093/ehjci/jet141.

    Article  PubMed  Google Scholar 

  73. Campbell, K. S., P. M. L. Janssen, and S. G. Campbell. Force-dependent recruitment from the myosin off state contributes to length-dependent activation. Biophys. J. 115(3):543–553, 2018. https://doi.org/10.1016/j.bpj.2018.07.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mojumder, J., J. S. Choy, S. Leng, L. Zhong, G. S. Kassab, and L. C. Lee. Mechanical stimuli for left ventricular growth during pressure overload. Exp. Mech. 61(1):131–146, 2021. https://doi.org/10.1007/s11340-020-00643-z.

    Article  CAS  PubMed  Google Scholar 

  75. Gebauer, A. M., M. R. Pfaller, F. A. Braeu, C. J. Cyron, and W. A. Wall. A homogenized constrained mixture model of cardiac growth and remodeling: analyzing mechanobiological stability and reversal. Biomech. Model Mechanobiol. 2023. https://doi.org/10.1007/s10237-023-01747-w.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Washio, T., S. Sugiura, J. I. Okada, and T. Hisada. Using systolic local mechanical load to predict fiber orientation in ventricles. Front Physiol. 11:467, 2020. https://doi.org/10.3389/fphys.2020.00467.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Support for this research was provided by National Institutes of Health grants R01 HL163977 and U01 HL133359.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan F. Wenk.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest to disclose.

Additional information

Associate Editor Arash Kheradvar oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 751 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharifi, H., Mehri, M., Mann, C.K. et al. Multiscale Finite Element Modeling of Left Ventricular Growth in Simulations of Valve Disease. Ann Biomed Eng (2024). https://doi.org/10.1007/s10439-024-03497-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10439-024-03497-x

Keywords

Navigation