Skip to main content
Log in

Noninvasive recovery of acinar anatomic information from CO2 expirograms

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A numerical single path model of respiratory gas exchange with distributed alveolar gas sources was used to estimate the anatomical changes in small peripheral airways such as occur in chronic obstructive pulmonary diseases (COPD). A previous sensitivity analysis of the single path model showed that decreasing total acinar airway cross-sectional area by an area reduction factor, R, results in computed gas expirograms with Phase III steepening similar to that observed in COPD patients. From experimental steady state CO2 washout data recorded from six healthy subjects and six COPD patients, optimized area reduction factors for the single path model were found that characterize peripheral airway anatomy for each subject. Area reduction factors were then combined with measured functional residual capacity data to calculate the normalized peripheral airspace diameters in a given subject, relative to the airspace diameters in the generations of an idealized standard lung. Mean area reduction factors for the patient subgroup were 63% of those for the healthy subgroup, which is related to the gas transport limitation observed in disease. Mean airspace sizes for the patient subgroup were 235% of the healthy subgroup, which characterizes the increase in size and reduction in number of peripheral airspaces due to tissue erosion in emphysema. From these results, the air-phase diffusive conductance in COPD patients was calculated to be 32% of the mean value in the healthy subjects. These findings correlated well with standard pulmonary function test data for the patients and yield the recovery of acinar airway information from gas washout by combining the single path model with experimental measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker, L.G.; Ultman, J.S.; Rhoades, R.A. Characterization of lung geometry from the single breath nitrogen washout test. Comp. Biomed. Res. 8:254–266; 1975.

    Article  CAS  Google Scholar 

  2. Baker, L.G.; Ultman, J.S.; Rhoades, R.A. Simultaneous gas flow and diffusion in a symmetric airway system: a mathematical model. Resp. Physiol. 21:119–138; 1974.

    CAS  Google Scholar 

  3. Bates, D.V.; Macklem, P.T.; Christie, R.V. Pulmonary emphysema. Philadelphia, Pennsylvania; W.B. Saunders Co.; 1971.

    Google Scholar 

  4. Ben Jebria, A. A mechanical approach to longitudinal dispersion of gas flowing in human airways. J. Biomech. 18(5):399–405; 1985.

    Article  CAS  PubMed  Google Scholar 

  5. Bonsignori, F.; Salvini, M. An analytical, model of gas transport in the human lung; Il Nuov. Cim. 11D: 1247–1262; 1989.

    Google Scholar 

  6. Buist, A.S.; Ross, B.B. Quantitative analysis of the alveolar plateau in the diagnosis of early airway obstruction. Am. Rev. Resp. Dis. 108:1078–1087; 1973.

    CAS  PubMed  Google Scholar 

  7. Cherniak, R.M.; Cherniak, L. Respiration in health and disease. Philadelphia: W.B. Saunders Co.; 1983.

    Google Scholar 

  8. Dreschler Parks, D.M.; Larsen, R.W.; Ultman, J.S. Inert gas mixing in the upper and central airways of man. Respir. Physiol. 62:305–324; 1985.

    Google Scholar 

  9. Fletcher, R. The single breath test for carbon dioxide. Arlov, Sweden: Berlings; 1986.

    Google Scholar 

  10. Flint, L.F.; Eisenklam, P. Dispersion of matter in transitional flow through straight tubes. Proc. Roy. Soc. (A) 315:519–533; 1970.

    CAS  Google Scholar 

  11. Gill W.N.; Sankarasubramnian, B. Exact analysis of unsteady convective diffusion. Proc. Roy. Soc. (A) 316:341–350; 1970.

    Google Scholar 

  12. Gill, W.N.; Sankarasubramanian, R. Dispersion of a non-uniform slug in time-dependent flow. Proc. Roy. Soc. (A) 322:101–117; 1971.

    Google Scholar 

  13. Hansen, J.E.; Ampaya, E.P.; Bryant, G.H.; Navin, J.J. Human airspace shapes, sizes, areas, and volumes. J. Appl. Physiol. 38(6):990–995; 1975.

    CAS  PubMed  Google Scholar 

  14. Hogg, J.C.; Macklem, P.T.; Thurlbeck, W.M. Site and nature of airway obstruction in chronic obstructive lung disease. N. Eng. J. Med. 278(25):1355–1360; 1968.

    CAS  Google Scholar 

  15. Hogg, W.; Brunton, J.; Kryger, M.; Brown, R; Macklem, P.T. Gas diffusion across collateral channels. J. Appl. Physiol. 33: 568–575.

  16. Horsfield, K.; Cumming, G.; Hicken, P. A morphological study of airway disease using bronchial cast. Am. Rev. Resp. Dis. 93:900–906; 1966.

    CAS  PubMed  Google Scholar 

  17. Kacmarek, R.M.; Mack, C.W.; Dimas, S. The essentials of respiratory therapy. Chicago; Year Book Med. Pub., Inc.; 1985.

    Google Scholar 

  18. Langley, F.; Even, P.; Duroux, R.L.; Cumming, G.; Cumming, G. Ventilatory consequences of unilateral pulmonary artery occlusion. Coloques. Inst. Natl. Sante Rech. Med. 51:209–212; 1975.

    Google Scholar 

  19. Mazzone, R.W.; Modell, H.I.; Farhi, L.E. Interaction of convection and diffusion in pulmonary gas transport. Resp. Physiol. 28:217–225; 1976.

    CAS  Google Scholar 

  20. Neufeld, G.R.; Gobran, S.; Baumgardner, J.E.; Aukburg, S.J.; Schreiner, M.; Scherer, P.W. Diffusivity, respiratory rate and tidal volume influence inert gas expirograms. Resp. Physiol. 84:31–37; 1991.

    CAS  Google Scholar 

  21. Neufeld, G.R.; Schwardt, J.D.; Gobran, S.R.; Baumgardner, J.E.; Schreiner, M. S.; Aukburg, S.J.; Scherer, P.W. Modelling steady state elimination of He, SF6, and CO2: effect of morphometry. Resp. Physiol. 88:257–275; 1992.

    CAS  Google Scholar 

  22. Ollson, S.G.; Fletcher, R.; Jonson, B. Nordstrom, L.; Prakash, O. Clinical studies of gas exchange during ventilatory support—A method using the Siemens-Elema CO2 analyzer. Br. J. Anaesth. 52:491; 1981.

    Google Scholar 

  23. Prowse, K.; Cumming, G. Effect of lung volume and disease on the lung nitrogen decay curve. J. Appl. Physiol. 34:23–33; 1973.

    CAS  PubMed  Google Scholar 

  24. Scherer, P.W.; Shendalman, L.H.; Greene, N.M.; Bouhuyo, A. Measurement of axial diffusivities in a model of the bronchial airways. J. Appl. Physiol. 38:719–723; 1975.

    CAS  PubMed  Google Scholar 

  25. Scherer, P.W.; Gobran, S.; Aukburg, S.J.; Baumgardner, J.E.; Bartkowski, R.; Neufeld, G.R. Numerical and experimental study of steady-state CO2 and inert gas washout. J. Appl. Physiol. 64:1022–1029; 1988.

    CAS  PubMed  Google Scholar 

  26. Schreiner, M.S.; Hanma, Y.; Aukburg, S.J.; Neufeld, G.R.; Scherer, P.W. Effective diffusing area in children: a noninvasive measure of pulmonary function. Am. Rev. Resp. Dis. 131:A268, 1985.

    Google Scholar 

  27. Schwardt, J.D.; Gobran, S.R.; Neufeld, G.R.; Aukburg, S.J.; Scherer, P.W. Sensitivity of CO2 washout to changes in acinar structure in a single-path model of lung airways. Ann. Biomed. Eng. 19:679–697; 1991.

    Article  CAS  PubMed  Google Scholar 

  28. Schwardt, J.D. Influence of airway structure on gas expirograms. Ph.D. Thesis, University of Pennsylvania; Philadelphia, Pennsylvania; 1992.

    Google Scholar 

  29. Taylor, G.I. Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. Roy. Soc. A219:186; 1953.

    Google Scholar 

  30. Taylor, G.I. Conditions under which dispersion of solute in a stream of solyent can be used to measure molecular diffusion. Proc. Roy. Soc. A225:473; 1954.

    Google Scholar 

  31. Thurlbeck, W.M.; Henderson, J.A.; Fraser, R.G.; Bates, D.V. Chronic obstructive lung disease. Medicine 49(2):81–145; 1970.

    Google Scholar 

  32. Weibel, E.R. Morphometry of the human lung. Berlin: Springer-Verlag; 1963.

    Google Scholar 

  33. West, J.B. Respiratory physiology—The essentials. Baltimore: Williams and Wilkins; 1985.

    Google Scholar 

  34. West, J.B. Respiratory pathophysiology—The essentials. Baltimore: Williams and Wilkins; 1987.

    Google Scholar 

  35. Wilson, T.A.; Lin K.H. Convection and diffusion in the airways and the design of the bronchial tree. In: Airway Dynamics, edited by Bouthuys, A.; New York; Thomas, pp. 5–19; 1970.

    Google Scholar 

  36. Worth, H.; Piiper, J. Diffusion of helium, carbon monoxide, and sulfur hexafluoride in gas mixtures similar to alveolar gas. Respir. Physiol. 32:155–166; 1978.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwardt, J.D., Neufeld, G.R., Baumgardner, J.E. et al. Noninvasive recovery of acinar anatomic information from CO2 expirograms. Ann Biomed Eng 22, 293–306 (1994). https://doi.org/10.1007/BF02368236

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368236

Keywords

Navigation