Skip to main content
Log in

Identification algorithm for systemic arterial parameters with application to total artificial heart control

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A new algorithm for estimating systemic arterial parameters from systolic pressure and flow measurements at the root of the aorta is developed and tested through a systems identification approach. The resulting procedure has direct application to a total artificial heart (TAH) control system currently under development. Identification models, representing the systemic arterial system, are developed from existing work in the area of cardiovascular modeling. The resistive and compliance components of these models are physically significant, representing overall hydraulic properties of the systemic arterial system. A unique method of parameterizing the identification models is designed which operates on the basis of aortic pressure and flow measurements taken exclusively during systole. The estimator is a modified recursive least squares algorithm which utilizes covariance modification to track time-varying parameters and a dead-zone to improve the robustness. Performance of the estimation algorithm was tested on data generated by a higher-order distributed model of the systemic arterial bed using normal canine parameters. Results from model-to-model experiments verify the consistency of the estimates and the ability of the estimator to converge quickly and track dynamically varying parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atsumi, K. Research and development on the total artificial heart from engineering aspects. Artif. Organs. 10(1):12–19; 1986.

    CAS  PubMed  Google Scholar 

  2. Avanzolini, G.; Barbini, P.; Cappello, A.; Cevenini, G.; Moller, D.; Pohl, V.; Sikora, T.: Electrical analogs for monitoring vascular properties in artificial heart studies. IEEE Trans. Biomed. Eng. 36:462–470; 1989.

    CAS  PubMed  Google Scholar 

  3. Burattini, R.; Gnudi, G. Computer identification of models for the arterial tree input impedance: Comparison between two new simple models and first experimental results. Med. Biol. Eng. Comput. 20:134–144; 1982.

    CAS  PubMed  Google Scholar 

  4. Cerny, J.D.; Jeutter, D.C. A DC/DC Resonant power converter for an electric artificial heart. The 11th Annual IEEE-EMBS International Conf. 11: 154–156; 1989.

    Google Scholar 

  5. Chang, P.P.; Matson, G.L.; Kendrick, J.E.; Rideout, V.C. Parameter estimation in the canine cardiovascular system. IEEE Trans. Automat. Contr. 19:927–931; 1974.

    Article  Google Scholar 

  6. Chiang, B.Y.; Olsen, D.B.; Gaykowski, R.; Dries, D.; Burns, G.L.; Hamanaka, Y.; Murray, K.D.; Ilyia, E.; Dew P.A.; Hughes, S.D.; Nielsen, S.D.; Kolff, W.J.. Evaluation of treadmill exercise on total artificial heart recipients. Trans. ASAIO 30:514–519; 1984.

    CAS  Google Scholar 

  7. Clark, J.W.; Ling, R.Y.S.; Srinivasan, R.; Cole, J.S., Pruett, R.C. A Two-stage identification scheme for the determination of the parameters of a model of left heart and systemic circulation. IEEE Trans. Biomed. Eng. 27:20–29; 1980.

    PubMed  Google Scholar 

  8. Deswysen, B.A. Parameter estimation of a simple model of the left ventricle and of the systemic vascular bed, with particular attention to the physical meaning of the left ventricle parameters. IEEE Trans. Biomed. Eng. 24:29–38; 1977.

    CAS  PubMed  Google Scholar 

  9. Deswysen, B.A.; Charlier, A.A.; Gevers, M. Quantitative evaluation of the systemic arterial bed by parameter estimation of a simple model. Med. Biol. Eng. Comput. 18: 153–166; 1980.

    CAS  PubMed  Google Scholar 

  10. Fortescue, T.R.; Kershenbaum, L.S.; Ydstie, B.E. Implementation of self-tuning regulators with variable forgetting factors. Automatica 17(6):831–835; 1981.

    Article  Google Scholar 

  11. Goodwin, G.C.; Sin, K.S. Adaptive filtering, prediction and control. Englewood Cliffs, NJ: Prentice-Hall, Inc.; 1984.

    Google Scholar 

  12. Guyton, A.C. Textbook of medical physiology. 6th ed. Philadelphia: W.B. Saunders; 1981.

    Google Scholar 

  13. Guyton, A.C. The Relationship of cardiac output and arterial pressure control. Circulation. 64:1079–1088; 1981.

    CAS  PubMed  Google Scholar 

  14. Hennig, E.; Clevert, H.D.; Bucherl, E.S.; Waliner, F. A novel control system for pneumatic left heart assist device. Proc. 4th Euro. Soc. Artif. Organs; 1977: pp. 342–349.

  15. Hennig, E.; Siestrup, C.G.; Krautzberger, W.; Kleß, H.; Bucherl, E.S. The Relationship of cardiac output and venous pressure in long surviving calves with total artifical heart. Trans. ASAIO. 24:616–624; 1978.

    CAS  Google Scholar 

  16. Khomeshwari, A.R.; Jeutter, D.C.: A CMOS microcontroller based pcm encoder for use with a total artificial heart. The 11 th Annual IEEE-EMBS International Conf. Seattle, WA. 11:157–159; 1989.

    Google Scholar 

  17. Kitamura, T.; Spiegelberg, J.; Frank, J.; Mohnhaupt, A.; Affeld, K. A Control and estimation technique of the portable total artificial heart driver. IFAC 9th Triennial World Congress Budapest, Hungary; 1984: pp. 3057–3063.

  18. Kitamura, T.; Akashi, H. A technique for real-time estimation of hemodynamic state and parameters in driving the piston-bellows type artificial heart. Automedica. 5:1–23; 1984.

    Google Scholar 

  19. Kitamura, T.; Katsuhiko, M.; Akashi, H. Adaptive control technique for artificial hearts. IEEE Trans. Biomedical Eng. BME33:839–844; 1986.

    CAS  Google Scholar 

  20. Landis, D.L.; Rosenberg, G.; Donachy, J.H.; Pierce, W.S. Automatic control fro the artificial heart. Proc. IEEE Frontiers Eng. Health Care; 1980: pp. 305–310.

  21. Luebbe, A.S. Recipients of homologous donor hearts or artificial blood pumps lack nerve impulses. Artif. Organs. 13:87–88; 1989.

    CAS  PubMed  Google Scholar 

  22. Lung, L.; Sodetstrom, T. Theory and practice of recursive identification. Cambridge, MA: MIT Press, 1983.

    Google Scholar 

  23. Maeda, T. Predictive control by physical activity rate of a total artificial heart. Trans. ASAIO. 34:480–484; 1988.

    CAS  Google Scholar 

  24. Magovern, J.A.; Rosenberg, G.; Pierce, W.S. Development and current status of a total artificial heart. Artif. Organs. 10:357–363; 1986.

    CAS  PubMed  Google Scholar 

  25. Mcginnis, B.C.; Guo, Z.W.; Lu, P.C.; Wang, J.C.. Adaptive control of left ventricular bypass assist devices. IEEE Trans. Automat. Contr. 30:322–329; 1982.

    Google Scholar 

  26. Moller, D.P.F.; Barnikol, W.K.R.; Popovic, D.; Thiele, G.; Hennig, E.; Bucherl, E.S. Evaluation of hemodynamic parameters for adaptive control of the artificial heart by simulation of the vascular system. IFAC 9th Triennial World Congress, Budapest, Hungary; 1984: pp. 3039–3043.

  27. Nose, Y.; Jacobs, G.; Kiraly, R.J.; Golding, L.; Harasaki, H.; Takatani, S.; Murabayashi, S.; Sukalac, R.W.; Kambic, H.; Snow, J. Experimental results for chronic left ventricle assist and total artificial heart development. Artif. Organs. 17(1); 1983.

  28. Nedwek, P.C. Transdermal radio frequency coil analysis using network analyzer measurements for an artificial heart powering system. Milwaukee, WI: Marquette University; December, 1988. Masters Thesis.

    Google Scholar 

  29. Neuman, C.P.; Baradello, C.S. Digital transfer functions for microcomputer control. IEEE Trans. Sys. Man, Cybern. 9:856–860; 1979.

    Google Scholar 

  30. Ohley, W.J.; Kao, C.; Jaron, D. Validity of an arterial system model: A quantitative evaluation. IEEE Trans. Biomed. Eng. 27:203–211; 1980.

    CAS  PubMed  Google Scholar 

  31. Snyder, A.J.; Imachi, K.; Hennig, E. Control. In: Bucherl, E.S., ed. Proc. 2nd World Symp. Artif. Heart. Braunschweig: Wieweg-Verlag; 1986: pp. 165–210.

    Google Scholar 

  32. Sunagawa, K.; Burkhoff, D.; Lim, K.O.; Sagawa, K. Impedance loading servo pump system for excised canine ventricle. Am. J. Physiol. 243:346–350; 1982.

    Google Scholar 

  33. Ruchti, T.L.; Brown, R.H.; Feng, X.; Jeutter, D.C. Estimation of systemic arterial parameters for control of an electrically actuated total artificial heart. Proceedings of the 32nd IEEE Midwest Symposium on Circuits and Systems. Champaign, IL; 1989: pp. 640–643.

  34. Ruchti, T.L.; Brown, R.H.; Feng, X. Parameter estimation of the systemic arterial bed for control of an electrically actuated total artificial heart. The 11th Annual IEEE-EMBS International Conf., Seattle, WA. 11:151–152; 1989.

    Google Scholar 

  35. Ruchti, T.L.; Brown, R.H. Recursive estimation of systemic arterial parameters for control of an electrically actuated total artificial heart. Proceedings of the 28th IEEE Conference on Decision and Control. Tampa, FL; 1989: pp. 1798–1799.

  36. Ruchti, T.L. Identification of the systemic arterial system for control of an electrically actuated total artificial heart. Milwaukee, WI: Marquette University; 1990. Masters Thesis.

    Google Scholar 

  37. Takatani, S.; Harasaki, H.; Koike, S.; Yada, I.; Yozu, R.; Fujimoto, L.; Murabayashi, S.; Jacobs, G.; Kiraly, R.; Nose, Y. Optimum control mode for a total artificial heart. Trans. ASAIO. 28:148–153; 1982.

    CAS  Google Scholar 

  38. Toy, S.M.; Melbin, J.; Noodergraaf, A. Reduced models of the arterial systems. IEEE Trans. Biomed. Eng. 32:174–176; 1985.

    CAS  PubMed  Google Scholar 

  39. Wang, J.C.; Wu, P.C.; McInnis, B.C. A Microcomputer-based control system for the total artificial heart. Automatica. 23:275–286; 1987.

    Article  Google Scholar 

  40. Westerhof, N.; Elzinga, G.; Van den Bos, G.C.: Influence of central and peripheral changes on the hydraulic input impedance of the systemic arterial tree. Med. and Biol. Eng. 11:710–722; 1973.

    CAS  Google Scholar 

  41. Yunger, J.C. A Closed-loop fault-tolerant microprocessorbased step motor control. Milwaukee, WI: Marquette University; 1990. Masters Thesis.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruchti, T.L., Brown, R.H., Jeutter, D.C. et al. Identification algorithm for systemic arterial parameters with application to total artificial heart control. Ann Biomed Eng 21, 221–236 (1993). https://doi.org/10.1007/BF02368178

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368178

Keywords

Navigation