Skip to main content
Log in

Ultrastructure, function and composition of smooth muscle

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Filamentous myosin is present in both relaxed (myosin light chains unphosphorylated) and contracted (light chains phosphorylated) vascular smooth muscle. The organization of myosin and actin filaments and the insertion of the latter on cytoplasmic and plasma membrane bound dense bodies is consistent with a mini sarcomere-like organization and a sliding filament mechanism of contraction in smooth muscle.

Mitochondria are high capacity, low affinity Ca stores in smooth muscle. They do not play a role in the regulation of cytoplasmic Ca2+ at physiological levels.

The localization and Ca content of the junctional sarcoplasmatic reticulum (SR) is consistent with this organelle being the major intracellular source of activator Ca released by excitatory transmitters.

Repeated contractions in the absence of extracellular Ca2+ (thought to represent recycling of intracellular activator Ca2+) can be demonstrated if the excitatory agent is not allowed to remain in contact with the smooth muscle throughout relaxation; the demonstration of “recycling” is facilitated if the efflux of cellular Ca2+ is blocked.

The rise in total cytoplasmic calcium measured with electron probe analysis during a maintained (30 min) contracture in rabbit portal-anterior mesenteric vein smooth muscle (∼0.9 mmol/kg dry cytoplasm) is greater than the amount of Ca that could be bound to calmodulin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adelstein, R.S. and E. Eisenberg. Regulation and kinetics of the actin-myosin-ATP interaction.Annu. Rev. Physiol. 49:921–956, 1980.

    CAS  Google Scholar 

  2. Ashton, F.T., A.V. Somlyo, and A.P. Somlyo. The contractile apparatus of vascular smooth muscle: Intermediate high voltage stereo electron microscopy.J. Mol. Biol. 98:17–29, 1975.

    CAS  PubMed  Google Scholar 

  3. Bond, M., T. Kitazawa, A.P. Somlyo and A.V. Somlyo. Release and recycling of calcium by the sarcoplasmic reticulum in guinea pig portal vein smooth muscle.J. Physiol. (London) (in press).

  4. Bond, M., H. Shuman, A.P. Somlyo and A.V. Somlyo. Total cytoplasmic calcium in relaxed and maximally contracted rabbit portal vein smooth muscle.J. Physiol. (London) (in press).

  5. Bond, M. and A.V. Somlyo. Dense bodies and actin polarity in vertebrate smooth muscle.J Cell Biol. 95: 403–413, 1982.

    Article  CAS  PubMed  Google Scholar 

  6. Casteels, R. and G. Droogmans. Membrane potential and excitation-contraction coupling in smooth muscle.Fed. Proc. Fed. Am. Soc. Exp. Biol. 41:2879–2882, 1982.

    CAS  Google Scholar 

  7. Deth, R. and R. Casteels. A study of releasable Ca fractions in smooth muscle cells of the rabbit aorta.J. Gen. Physiol. 69:401–416, 1977.

    Article  CAS  PubMed  Google Scholar 

  8. Devine, C.E., A.V. Somlyo and A.P. Somlyo. Sarcoplasmic reticulum and excitation-contraction coupling in mammalian smooth muscle.J. Cell Biol. 52:690–718, 1972.

    Article  CAS  PubMed  Google Scholar 

  9. Endo, M., T. Kitazawa, and S. Yagi. Different features of responses of the sarcoplasmic reticulum in cardiac and smooth muscles. InMuscle Contraction. Its Regulatory Mechanisms, S. Ebashi, K. Maruyama, M. Endo (eds). Tokyo, Japan Scientific Society Press, Springer-Verlag, pp. 447–464, 1980.

    Google Scholar 

  10. Endo, M., S. Yagi, and M. Iino. Tension-pCa relation and sarcoplasmic reticulum responses in chemically skinned smooth muscle fibers.Fed. Proc. Fed. Am. Soc. Exp. Biol. 41:2245–2250, 1982.

    CAS  Google Scholar 

  11. Ford, L.E. and R.J. Podolsky. Calcium uptake and force development by skinned muscle fibers in EGTA buffered solutions.J. Physiol. (London) 223:1–19, 1972.

    CAS  Google Scholar 

  12. Grand, R.J.A., S.V. Perry, and R.A. Weeks. Troponin C-like proteins (calmodulins) from mammalian smooth muscle and other tissues.Biochem. J. 177:521–529, 1979.

    CAS  PubMed  Google Scholar 

  13. Hall, T.A. The microprobe assay of chemical elements. InPhysical Techniques in Biological Research. Vol. 1A. G. Oster, ed. Academic Press, Inc., New York. pp. 151–267, 1971.

    Google Scholar 

  14. Hartshorne, D.J. and A. Gorecka. The biochemistry of the contractile proteins of smooth muscle. InHandbook of Physiology, Section 2, Vol. II,Vascular Smooth Muscle (edited by D.F. Bohret al.), pp. 92–120, 1980.

  15. Hutchinson, T.E. and A.P. Somlyo. (Editors)Microprobe Analysis of Biological Systems. Academic Press 1981.

  16. Isaacson, M.S. and D.E. Johnson. The microanalysis of light elements using transmitted energy loss electrons.Ultramicroscopy 1:33–52, 1975.

    Article  CAS  PubMed  Google Scholar 

  17. Itoh, T., H. Kuriyama, and H. Suzuki. Excitation-contraction coupling in smooth muscle cells of the guinea-pig mesenteric artery.J. Physiol. 321:513–535, 1981.

    CAS  PubMed  Google Scholar 

  18. Kendrick-Jones, J. and J.M. Scholey. Myosin-linked regulatory systems.J. Muscle Res. Cell Motil. 2: 347–372, 1981.

    Article  CAS  Google Scholar 

  19. Kitazawa, T., H. Shuman and A.P. Somlyo. Quantitative electron probe analysis: Problems and solutions.Ultramicroscopy 11: In press.

  20. Kitazawa, T., A.P. Somlyo and A.V. Somlyo. The effects of valinomycin on ion movements across the sarcoplasmic reticulum in frog muscle.J. Physiol. (London) 350:253–268, 1984.

    CAS  Google Scholar 

  21. Klee, C.B., T.H. Crouch, and P.G. Richman. Calmodulin.Annu. Rev. Biochem. 49:489–515, 1980.

    Article  CAS  PubMed  Google Scholar 

  22. Mangel, A.W., D.O. Nelson, J.A. Conner, and C.L. Prosser. Contractions of cat small intestinal smooth muscle in calcium-free solution.Nature (London) 281:582–583, 1979.

    Article  CAS  Google Scholar 

  23. Morgan, J.P. and K.G. Morgan. Vascular smooth muscle: The first recorded Ca2+ transients.Pflügers Arch. 395:75–77, 1982.

    Article  CAS  PubMed  Google Scholar 

  24. Ottensmeyer, F.P. and J.W. Andrew. High-resolution microanalysis of biological specimens by electron energy loss spectroscopy and by electron spectroscopic imaging.J. Ultrastructure Res. 72:336–348, 1980.

    Article  CAS  Google Scholar 

  25. Raeymaekers, L. and W. Hasselbach. Ca2+-ATPase activity, phosphoprotein formation and phosphate turnover in a microsomal fraction of smooth muscle.Eur. J. Biochem. 116:373–378, 1981.

    Article  CAS  PubMed  Google Scholar 

  26. Shuman, H. and A.P. Somlyo. Energy filtered “conventional” transmission imaging with an magnetic sector spectrometer. InAnalytical Electron Microscopy, R.H. Geiss (ed) San Francisco Press Inc., San Francisco, CA, pp. 202–204, 1981.

    Google Scholar 

  27. Shuman, H. and A.P. Somlyo. Energy filtered transmission electron microscopy of ferritin.Proc. Natl. Acad. Sci. (USA) 79:106–107, 1982.

    CAS  Google Scholar 

  28. Shuman, H., A.V. Somlyo and A.P. Somlyo. Quantitative electron probe microanalysis of biological thin sections: Methods and validity.Ultramicroscopy 1:317–339, 1976.

    Article  CAS  PubMed  Google Scholar 

  29. Shuman, H., A.V. Somlyo, and A.P. Somlyo. Electron energy-loss analysis in biology: Application to muscle and a parallel collection system. InMicroprobe Analysis of Biological Systems, T.E. Hutchinson and A.P. Somlyo (editors), Academic Press, New York, pp. 289–308, 1981.

    Google Scholar 

  30. Shuman, H., A.V. Somlyo, and A.P. Somlyo. Theoretical and practical limits of ED x-ray analysis of biological thin sections. InScanning Electron Microscopy/1977: Vol. 1, O. Johari (Ed.). ITT Res. Inst., Chicago, pp. 663–672, 1977.

    Google Scholar 

  31. Somlyo, A.P., C.E. Devine, A.V. Somlyo, and R.V. Rice. Filament organization in vertebrate smooth muscle.Philos. Trans. R. Soc. London Ser. B. 265:223–229, 1973.

    CAS  Google Scholar 

  32. Somlyo, A.P., C.E. Devine, A.V. Somlyo, and S.R. North. Sarcoplasmic reticulum and the temperature-dependent contraction of smooth muscle in calcium-free solutions.J. Cell Biol. 51:722–741, 1971.

    Article  CAS  PubMed  Google Scholar 

  33. Somlyo, A.P. and H. Shuman. Electron probe and electron energy loss analysis in biology.Ultramicroscopy 8:219–234, 1981.

    Google Scholar 

  34. Somlyo, A.P. and A.V. Somlyo. Vascular smooth muscle. I. Normal structure, pathology, biochemistry and biophysics.Pharmacol. Rev. 20:197–272, 1968.

    CAS  PubMed  Google Scholar 

  35. Somlyo, A.P., A.V. Somlyo, H. Shuman, B. Sloane, and A. Scarpa. Electron probe analysis of calcium compartments in cryo sections of smooth and striated muscles.Ann. N.Y. Acad. Sci. 307:523–544, 1978.

    CAS  PubMed  Google Scholar 

  36. Somlyo, A.P., A.V. Somlyo, and H. Shuman. Electron probe analysis of vascular smooth muscle: Composition of mitochondria, nuclei and cytoplasm.J. Cell Biol. 81:316–335, 1979.

    Article  CAS  PubMed  Google Scholar 

  37. Somlyo, A.P., A.V. Somlyo, H. Shuman, and M. Endo. Calcium and monovalent ions in smooth muscle.Fed. Proc. Fed. Am. Soc. Exp. Biol. 41:2883–2890, 1982.

    CAS  Google Scholar 

  38. Somlyo, A.V. Bridging structures spanning the junctional gap at the triad of skeletal muscle.J. Cell Biol. 80: 743–750, 1979.

    Article  CAS  PubMed  Google Scholar 

  39. Somlyo, A.V., T.M. Butler, M. Bond, and A.P. Somlyo. Myosin filaments have nonphosphorylated light chains in relaxed smooth muscle.Nature 294:567–570, 1981.

    Article  CAS  PubMed  Google Scholar 

  40. Somlyo, A.V., H. Gonzalez-Serratos, H. Shuman, G. McClellan, and A.P. Somlyo. Calcium release and ionic changes in the sarcoplasmic reticulum of tetanized muscle: An electron probe study.J. Cell Biol. 90: 577–594, 1981.

    Article  CAS  PubMed  Google Scholar 

  41. Somlyo, A.V., H. Shuman, and A.P. Somlyo. Elemental distribution in striated muscle and effects of hypertonicity: Electron probe analysis of cryo sections.J. Cell Biol. 74:828–857, 1977.

    Article  CAS  PubMed  Google Scholar 

  42. Somlyo, A.V., H. Shuman, and A.P. Somlyo. The composition of the sarcoplasmic reticulum in situ: Electron probe X-ray microanalysis of cryosections.Nature 268:556–558, 1977.

    Article  CAS  PubMed  Google Scholar 

  43. Somlyo, A.V. and A.P. Somlyo. Strontium accumulation by sarcoplasmic reticulum and mitochondria in vascular smooth muscle.Science. 174:955–958, 1971.

    CAS  PubMed  Google Scholar 

  44. Stephenson, E.W. Properties of chloride-stimulated45Ca flux in skinned muscle fibers.J. Gen. Physiol. 71: 411–430, 1978.

    Article  CAS  PubMed  Google Scholar 

  45. Suzuki, H., H. Onishi, K. Takahasi, and S. Watanabe. Structure and function of chicken gizzard myosin.J. Biochem. 84:1529–1542, 1978.

    CAS  PubMed  Google Scholar 

  46. Trybus, K.M., T.W. Huiatt, and S. Lowey. A bent monomeric conformation of myosin from smooth muscle.Proc. Nat. Acad. Sci. USA 79:6151–6155, 1982.

    CAS  PubMed  Google Scholar 

  47. Vallieres, J., A. Scarpa, and A.P. Somlyo. Subcellular fractions of smooth muscle: Isolation, substrate utilization and Ca++.Arch. Biochem. Biophys. 170:659–669, 1975.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Somlyo, A.P., Somlyo, A.V., Kitazawa, T. et al. Ultrastructure, function and composition of smooth muscle. Ann Biomed Eng 11, 579–588 (1983). https://doi.org/10.1007/BF02364087

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02364087

Keywords

Navigation