Skip to main content
Log in

Tubular transport mechanisms of quinapril and quinaprilat in the isolated perfused rat kidney: Effect of organic anions and cations

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

The clearance mechanisms of quinapril and quinaprilat were probed using an isolated perfused rat kidney model. Sixty-four experiments were performed with drug in the absence and presence of classic inhibitors of the organic acid (i.e., probenecid and p-aminohippurate) and organic base (i.e., tetraethylammonium and quinine) transport systems of the proximal tubule. Initial perfusate concentrations of quinapril and quinaprilat were approximately 2.36 μM (or 1000 ng/ml), and transport inhibitors were coperfused at 100–10,000 times the drugs' initial μM concentrations. Quinapril and quinaprilat concentrations were determined in perfusate, urine, and perfusate ultrafiltrate using a reversed-phase HPLC procedure with radiochemical detection, coupled to liquid scintillation spectrometry. Perfusate protein binding was determined using an ultrafiltration method at 37°C. Overall, the clearance ratios of quinapril (total renal clearance divided byfu·GFR) and quinaprilat (urinary clearance divided byfu·GFR) were significantly reduced, and in a dose-dependent manner, by the coperfusion of organic acids but not organic bases. The data demonstrate that the organic anionic secretory system is the primary mechanism by which quinapril and quinaprilat are transported into and across renal proximal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. B. Kostis, J. J. Raia, Jr., E. A. DeFelice, J. A. Barone, and R. G. Deeter. Comparative clinical pharmacology of ACE inhibitors. In J. B. Kostis and E. A. DeFelice (eds.),Angiotensin Converting Enzyme Inhibitors, Alan R. Liss, New York, 1987 pp. 19–54.

    Google Scholar 

  2. R. N. Brogden, P. A. Todd, and E. M. Sorkin. Captopril: An update of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in hypertension and congestive heart failure.Drugs 36:540–600 (1988).

    Article  CAS  PubMed  Google Scholar 

  3. P. A. Todd and K. L. Goa. Enalapril: A reappraisal of its pharmacology and therapeutic use in hypertension.Drugs 43:346–381 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. A. N. Wadworth and R. N. Brogden. Quinapril: A review of its pharmacological properties, and therapeutic efficacy in cardiovascular disorders.Drugs 41:378–399 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. G. H. Williams and E. Braunwald. Hypertensive vascular disease. In E. Braunwald, K. J. Isselbacher, R. G. Petersdorf, J. D. Wilson, J. B. Martin, and A. S. Fauci (eds.),Harrison's Principles of Internal Medicine, 11th ed., McGraw-Hill, New York, 1987, pp. 1024–1037.

    Google Scholar 

  6. A. R. Kugler, S. C. Olson, and D. E. Smith. Disposition of quinapril and quinaprilat in the isolated perfused rat kidney.J. Pharmacokin. Biopharm. 23:287–305 (1995).

    Article  CAS  Google Scholar 

  7. J. M. Nishiitsutsuji-Uwo, B. D. Ross, and H. A. Krebs. Metabolic activities of the isolated perfused rat kidney.Biochem. J. 103:852–862 (1967).

    CAS  PubMed Central  PubMed  Google Scholar 

  8. R. H. Bowman. The perfused rat kidney.Meth. Enzymol. 39:3–11 (1975).

    Article  CAS  PubMed  Google Scholar 

  9. F. H. Epstein, J. T. Brosnan, J. D. Tange, and B. D. Ross. Improved function with amino acids in the isolated perfused kidney.Am. J. Physiol. 243:F284-F292 (1982).

    CAS  PubMed  Google Scholar 

  10. H. A. Krebs and K. Henseleit. Untersunchugen uber die harnstoffbildung im tierkorper.Z. Physiol. Chem. 210:33–36 (1932).

    Article  CAS  Google Scholar 

  11. A. R. Kugler, S. C. Olson, and D. E. Smith. Determination of quinapril and quinaprilat by high-performance liquid chromatography with radiochemical detection, coupled to liquid scintillation spectrometry.J. Chromatog. B. 666:360–367 (1995).

    Article  CAS  Google Scholar 

  12. T. Prueksaritanont, M. L. Chen, and W. L. Chiou. Simple and micro high-performance liquid chromatographic method for simultaneous determination of p-aminohippuric acid and iothalamate in biological fluids.J. Chromatog. 306:89–97 (1984).

    Article  CAS  Google Scholar 

  13. B. D. Ross. The isolated perfused rat kidney.Clin. Sci. Mol. Med. 55:513–521 (1978).

    CAS  Google Scholar 

  14. T. Maack. Physiological evaluation of the isolated perfused rat kidney.Am. J. Physiol. 238:F71-F78 (1980).

    CAS  PubMed  Google Scholar 

  15. I. Bekersky. Use of the isolated perfused kidney as a tool in drug disposition studies.Drug Metab. Rev. 14:931–960 (1983).

    Article  CAS  PubMed  Google Scholar 

  16. C. A. Rodríguez and D. E. Smith. Influence of the unbound concentration of cefonicid on its renal elimination in isolated perfused rat kidneys.Antimicrob. Agents Chemother. 35:2395–2400 (1991).

    Article  PubMed Central  PubMed  Google Scholar 

  17. C. A. Rodríguez and D. E. Smith. Influence of angiotensin II-induced alterations in renal flow on excretion of cefonicid in isolated perfused rat kidneys.Antimicrob. Agents Chemother. 36:616–619 (1992).

    Article  PubMed Central  PubMed  Google Scholar 

  18. D. E. Smith, S. Guillard, and C. A. Rodríguez. Effect of angiotensin II-induced changes in perfusion flow rate on chlorothiazide transport in the isolated perfused rat kidney.J. Pharmacokin. Biopharm. 20:195–207 (1992).

    Article  CAS  Google Scholar 

  19. A. R. Kugler, S. C. Olson, and R. A. Jordan. In vitro quinapril metabolism in rat, dog, monkey, and human liver preparations.Pharm. Res. 8(Suppl.):S-239 (1991).

    Google Scholar 

  20. H. R. Kaplan, D. G. Taylor, S. C. Olson, and L. K. Andrews. Quinapril: A preclinical review of the pharmacology, pharmacokinetics, and toxicology.Angiology 40:335–350 (1989).

    CAS  PubMed  Google Scholar 

  21. J. H. Lin, I. W. Chen, E. H. Ulm, and D. E. Duggan. Differential renal handling of angiotensin-converting enzyme inhibitors enalaprilat and lisinopril in rats.Drug Metab. Dispos. 16:392–396 (1988).

    CAS  PubMed  Google Scholar 

  22. I. A. M. de Lannoy, R. Nespeca, and K. S. Pang. Renal handling of enalapril and enalaprilat: Studies in the isolated red blood cell-perfused rat kidney.J. Pharmacol. Exp. Ther. 251:1211–1222 (1989).

    PubMed  Google Scholar 

  23. D. E. Smith and A. R. Kugler. Influence of intrarenal metabolism on the analysis of renal drug transport mechanisms.J. Pharm. Sci. 88:1519–20 (1994).

    Article  Google Scholar 

  24. S. K. Mujais, A. Quintanilla, M. Zahid, K. Koch, W. Shaw, and T. Gibson. Renal handling of enalaprilat.Am. J. Kidney Dis. 19:121–125 (1992).

    Article  CAS  PubMed  Google Scholar 

  25. S. C. Olson, A. M. Horvath, B. M. Michniewicz, A. J. Sedman, W. A. Colburn, and P. G. Welling. The clinical pharmacokinetics of quinapril.Angiology 40:351–359 (1989).

    CAS  PubMed  Google Scholar 

  26. S. M. Singhvi, K. L. Duchin, D. a. Willard, D. N. McKinstry, and B. H. Migdalof. Renal handling of captopril: Effect of probenecid.Clin. Pharmacol. Ther. 32:182–189 (1982).

    Article  CAS  Google Scholar 

  27. F. H. Noormohamed, W. R. McNabb, and A. F. Lant. Pharmacokinetic and pharmacodynamic actions of enalapril in humans: Effect of probenecid pretreatment.J. Pharmacol. Exp. Ther. 253:362–368 (1990).

    CAS  PubMed  Google Scholar 

  28. K. Weisser, J. Schloos, S. Jakob, W. Mühlberg, D. Platt, and E. Mutschler. The influence of hydrochlorothiazide on the pharmacokinetics of enalapril in elderly patients.Eur. J. Clin. Pharmacol. 43:173–177 (1992).

    Article  CAS  PubMed  Google Scholar 

  29. K. L. Duchin, D. N. McKinstry, A. I. Cohen, and B. H. Migdalof. Pharmacokinetics of captopril in healthy subjects and in patients with cardiovascular diseases.Clin. Pharmacokin. 14:241–259 (1988).

    Article  CAS  Google Scholar 

  30. V. Vertes and R. Haynie. Comparative pharmacokinetics of captopril, enalapril, and quinapril.Am. J. Cardiol. 69:8C-16C (1992).

    Article  CAS  PubMed  Google Scholar 

  31. V. Ganapathy, M. Brandsch, and F. H. Leibach. Intestinal transport of amino acids and peptides. In L. R. Johnson (ed.),Physiology of the Gastrointestinal Tract, Raven Press, New York, 1994, pp. 1773–1794.

    Google Scholar 

  32. G. L. Amidon and H. J. Lee. Absorption of peptide and peptidomimetic drugs.Ann. Rev. Pharmacol. Toxicol. 34:321–341 (1994).

    Article  CAS  Google Scholar 

  33. D. E. Smith, A. R. Kugler, and J. B. Schnermann. Reabsorption and metabolism of quinapril and quinaprilat in rat kidney: In vivo micropuncture studies.J. Pharm. Sci. 84:1147–1150 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. D. C. Brater, P. P. Sokol, S. D. Hall, and T. D. McKinney. Disposition and dose requirements of drugs in renal insufficiency. In D. W. Seldin and G. Giebisch (eds.),The Kidney Physiology and Pathophysiology, 2nd ed., Raven Press, New York, 1992, pp. 3671–3695.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported in part by a gift from Parke-Davis Pharmaceutical Research, Division of Warner-Lambert Company and by National Institutes of Health Grant R01 GM35498.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kugler, A.R., Olson, S.C. & Smith, D.E. Tubular transport mechanisms of quinapril and quinaprilat in the isolated perfused rat kidney: Effect of organic anions and cations. Journal of Pharmacokinetics and Biopharmaceutics 24, 349–368 (1996). https://doi.org/10.1007/BF02353517

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02353517

Key words

Navigation