Skip to main content
Log in

Effect of angiotensin II-induced changes in perfusion flow rate on chlorothiazide transport in the isolated perfused rat kidney

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

Angiotensin II was used as a probe to study the effect of changes in perfusate flow rate on the renal clearance parameters of chlorothiazide in the isolated perfused rat kidney. Perfusion studies were performed in five rats with no angiotensin II present in the perfusate and in five rats with a 1–4 ng/min infusion of angiotensin II into the perfusate. Angiotensin II had a dramatic effect on the renal hemodynamics, resulting in a 43% decrease in perfusate flow, a 16% decrease in glomerular filtration rate (GFR), and a 45% increase in filtration fraction. Values for the fractional excretion of glucose were low and consistent, with or without angiotensin II. Although the unbound fraction (fu)of chlorothiazide was unchanged between treatments, the renal (CLr)and the secretion clearances were reduced by about 50% in the presence of angiotensin II; the excretion ratio [ER=CLr/(fu·GFR)]was reduced by 38% with angiotensin II present in the perfusate. Analysis of the data was complicated by the presence of a capacity-limited transport for renal tubular secretion. Transport parameters (±SD) were obtained and the corrected intrinsic secretory clearance [(Vmax/GFR)/Km]of chlorothiazide was 123 ± 18 without angiotensin II vs. 72.8 ± 30.0 with angiotensin II. These results demonstrate that alterations in organ perfusion can significantly reduce the clearance parameters of chlorothiazide in the rat IPK. These flow-induced changes in intrinsic secretory transport may reflect perturbations other than that of perfusion flow rate alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Levy. Effect of plasma protein binding on renal clearance of drugs.J. Pharm. Sci. 69:482–483 (1980).

    Article  CAS  PubMed  Google Scholar 

  2. S. Øie and L. Z. Benet. Altered drug disposition in disease states.Ann. Rep. Med. Chem. 15:277–287 (1980).

    Article  Google Scholar 

  3. G. R. Wilkinson. Clearance approaches in pharmacology.Pharmacol. Rev. 39:1–47 (1987).

    CAS  PubMed  Google Scholar 

  4. N. L. Benowitz. Effects of cardiac disease on pharmacokinetics: Pathophysiologic considerations. In L. Z. Benet, N. Massoud, and J. G. Gambertoglio (eds.),Pharmacokinetic Basis for Drug Treatment, Raven, New York, 1984, pp. 89–103.

    Google Scholar 

  5. L.-J. Lee and D. E. Smith. Effect of organ perfusion on renal drug transport: Application to furosemide in the isolated perfused rat kidney.Drug Metab. Dispos. 17:32–36 (1989).

    CAS  PubMed  Google Scholar 

  6. C. A. M. van Ginneken and F. G. M. Russel. Saturable pharmacokinetics in the renal excretion of drugs.Clin. Pharmacokin. 16:38–54 (1989).

    Article  Google Scholar 

  7. D. C. Brater and P. Chennavasin. Effects of renal disease: Pharmacokinetic considerations. In L. Z. Benet, N. Massoud, and J. G. Gambertoglio (eds.),Pharmacokinetic Basis for Drug Treatment, Raven, New York, 1984, pp. 119–147.

    Google Scholar 

  8. L. Z. Benet and L. B. Sheiner. Design and optimization of dosage regimens: Pharmacokinetic data. In A. G. Gilman, L. S. Goodman, T. W. Rall, and F. Murad (eds.),The Pharmacological Basis of Therapeutics, 7th ed., Macmillan, New York, 1985, p. 1678.

    Google Scholar 

  9. H. R. Brettell, J. K. Aikawa, and G. S. Gordon. Studies with chlorothiazide tagged with radioactive carbon (C14) in human beings.Arch. Intern. Med. 106:57–63 (1960).

    Article  CAS  PubMed  Google Scholar 

  10. L.-J. Lee, J. A. Cook, and D. E. Smith. Renal transport kinetics of chlorothiazide in the isolated perfused rat kidney.J. Pharmacol. Exp. Ther. 247:203–208 (1988).

    CAS  PubMed  Google Scholar 

  11. F. H. Epstein, J. T. Brosnan, J. D. Tange, and B. D. Ross. Improved function with amino acids in the isolated perfused kidney.Am. J. Physiol. 243:F284-F292 (1982).

    CAS  PubMed  Google Scholar 

  12. J. M. Nishiitsutsuji-Uwo, B. D. Ross, and H. A. Krebs. Metabolic activities of the isolated perfused rat kidney.Biochem. J. 103:852–862 (1967).

    CAS  PubMed Central  PubMed  Google Scholar 

  13. R. H. Bowman. The perfused rat kidney.Meth. Enzymol. 39:3–11 (1975).

    Article  CAS  PubMed  Google Scholar 

  14. W. W. Douglas. Polypeptides-angiotensin, plasma kinins, and others. In A. G. Gilman, L. S. Goodman, T. W. Rall, and F. Murad (eds.),The Pharmacological Basis of Therapeutics, 7th ed., Macmillan, New York, 1985, pp. 639–659.

    Google Scholar 

  15. A. C. Guyton. InTextbook of Medical Physiology, 5th ed., W. B. Saunders, Philadelphia, 1976, pp. 469–470.

    Google Scholar 

  16. E. K. Jackson, R. A. Branch, H. S. Margolius, and J. A. Oates. Physiological functions of the renal prostaglandin, renin, and kallikrein systems. In D. W. Seldin and G. Giebisch (eds.),The Kidney: Physiology and Pathophysiology, Vol. 1, Raven, New York, 1985, pp. 613–644.

    Google Scholar 

  17. E. T. Lin and L. Z. Benet. High pressure liquid chromatographic determination of chlorothiazide and hydrochlorothiazide in human serum and urine.APhA Acad. Pharm. Sci. 8(1):194 (1978).

    Google Scholar 

  18. T. N. Tozer, J. G. Gambertoglio, D. E. Furst, D. S. Avery, and N. H. G. Holford. Volume shifts and protein binding estimates using equilibrium dialysis: Application to prednisolone binding in humans.J. Pharm. Sci. 72:1442–1446 (1983).

    Article  CAS  PubMed  Google Scholar 

  19. MINSQ: Nonlinear parameter estimation and model development, MicroMath Scientific Software, Salt Lake City, UT, 1988.

  20. F. Andreasen and E. Mikkelsen. Distribution, elimination and effect of furosemide in normal subjects and in patients with heart failure.Eur. J. Clin. Pharmacol. 12:15–22 (1977).

    Article  CAS  PubMed  Google Scholar 

  21. R. Babini and P. J. Du Souich. Furosemide pharmacodynamics: Effect of respiratory and acid-base disturbances.J. Pharmacol. Exp. Ther. 237:623–628 (1986).

    CAS  PubMed  Google Scholar 

  22. D. C. Brater, R. Seiwell, S. Anderson, A. Burdette, G. J. Dehmer, and P. Chennavasin. Absorption and disposition of furosemide in congestive heart failure.Kidney Int. 22:171–176 (1982).

    Article  CAS  PubMed  Google Scholar 

  23. J. J. Cogan, M. H. Humphreys, C. J. Carlson, N. L. Benowitz, and E. Rapaport. Acute vasodilator therapy increases renal clearance of digoxin in patients with congestive heart failure. Circulation64:973–976 (1981).

    Article  CAS  PubMed  Google Scholar 

  24. C. A. Rodriguez and D. E. Smith. Influence of angiotensin II-induced alterations in renal flow on excretion of cefonicid in isolated perfused rat kidneys.Antimicrob. Agents Chemother. 36:616–619 (1992).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. D. Alcorn, K. R. Emslie, B. D. Ross, G. B. Ryan, and J. D. Tange. Selective distal nephron damage during isolated kidney perfusion.Kidney Int. 19:638–647 (1981).

    Article  CAS  PubMed  Google Scholar 

  26. M. Brezis, S. Rosen, P. Silva, and F. H. Epstein. Selective vulnerability of the medullary thick ascending limb to anoxia in the isolated perfused rat kidney.J. Clin. Invest. 73:182–190 (1984).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. M. Brezis, S. Rosen, P. Silva, and F. H. Epstein. Transport activity modifies thick ascending limb damage in the isolated perfused kidney.Kidney Int. 25:65–72 (1984).

    Article  CAS  PubMed  Google Scholar 

  28. W. Lieberthal, G. W. Stephens, E. F. Wolf, H. G. Rennke, M. L. Vasilevsky, C. R. Valeri, and N. G. Levinsky. Effect of erythrocytes on the function and morphology of the isolated perfused rat kidney.Renal Physiol. 10:14–24 (1987).

    CAS  PubMed  Google Scholar 

  29. W. Lieberthal, M. L. Vasilevsky, C. R. Valeri, and N. G. Levinsky. Interactions between ADH and prostaglandins in isolated erythrocyte-perfused rat kidney.Am. J. Physiol. 252:F331-F337 (1987).

    CAS  PubMed  Google Scholar 

  30. I. A. M. De Lannoy, R. Nespeca, and K. S. Pang. Renal handling of enalapril and enalaprilat: Studies in the isolated red blood cell-perfused rat kidney.J. Pharmacol. Exp. Ther. 251:1211–1222 (1989).

    PubMed  Google Scholar 

  31. H. R. Jacobson and J. P. Kokko. Diuretics: Sites and mechanisms of action.Ann. Rev. Pharmacol. Toxicol. 16:201–214 (1976).

    Article  CAS  Google Scholar 

  32. T. Maack. Physiological evaluation of the isolated perfused rat kidney.Am. J. Physiol. 238:F71-F78 (1980).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported in part by the National Institutes of Health grant GM 35498. At the time of this study, S. Guillard was a pharmacy student of Xavier University of Louisiana participating in our Summer Undergraduate Research Program. During the course of this work, C. A. Rodriguez was supported by a Rackham Minority Merit Fellowship from The University of Michigan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, D.E., Guillard, S. & Rodriguez, C.A. Effect of angiotensin II-induced changes in perfusion flow rate on chlorothiazide transport in the isolated perfused rat kidney. Journal of Pharmacokinetics and Biopharmaceutics 20, 195–207 (1992). https://doi.org/10.1007/BF01071001

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01071001

Key words

Navigation