Skip to main content
Log in

The nitrogen requirements ofGluconobacter, Acetobacter andFrateuria

  • Physiology and Growth
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The nitrogen requirements of 96Gluconobacter, 55Acetobacter and 7Frateuria strains were examined. Only someFrateuria strains were able to grow on 0.5% yeast extract broth or 0.5% peptone broth. In the presence ofd-glucose ord-mannitol as a carbon source, ammonium was used as the sole source of nitrogen by all three genera. With ethanol, only a fewAcetobacter strains grew on ammonium as a sole nitrogen source. Singlel-amino acids cannot serve as a sole source of carbon and nitrogen for growth ofGluconobacter, Acetobacter orFrateuria. The singlel-amino acids which were used by most strains as a sole nitrogen source for growth are: asparagine, aspartic acid, glutamine, glutamic acid, proline and alanine. SomeAcetobacter andGluconobacter strains deaminated alanine, asparagine, glutamic acid, threonine, serine and proline. NoFrateuria strain was able to develop on cysteine, glycine, threonine or tryptophan as a sole source of nitrogen for growth. An inhibitory effect of valine may explain the absence of growth on this amino acid. No amino acid is “essential” forGluconobacter, Acetobacter orFrateuria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asai, T., Iizuka, H. andKomagata, K. 1964. The flagellation and taxonomy of generaGluconobacter andAcetobacter with reference to the existence of intermediate strains. -J. Gen. Appl. Microbiol.10: 95–126.

    Google Scholar 

  • Belly, R. T. andClaus, G. W. 1972. Effect of amino acids on the growth ofAcetobacter suboxydans. -Arch. Mikrobiol.83: 237–245.

    Article  CAS  PubMed  Google Scholar 

  • Brown, G. D. andRainbow, C. 1956. Nutritional patterns in acetic acid bacteria. -J. Gen. Microbiol.15: 61–69.

    CAS  PubMed  Google Scholar 

  • Cohen, G. N., Stanier, R. Y. andLe Bras, G. 1969. Regulation of the biosynthesis of amino acids of the aspartate family in coliform bacteria and pseudomonads. -J. Bacteriol.19: 791–801.

    Google Scholar 

  • De Felice, M., Levinthal, M., Iaccarino, M. andGuardiola, J. 1979. Growth inhibition as a consequence of antagonism between related amino acids: Effect of valine inEscherichia coli K12. -Microbiol. Rev.43: 42–58.

    PubMed  Google Scholar 

  • De Ley, J. andFrateur, J. 1974.Acetobacter-Gluconobacter.In R. E. Buchanan and N. E. Gibbons, (eds), Bergey's manual of determinative bacteriology. 8th Ed. -Williams and Wilkins, Baltimore.

    Google Scholar 

  • Frateur, J. 1950. Essai sur la systématique des acetobacters. -Cellule53: 287–392.

    Google Scholar 

  • Gosselé, F., Swings, J. andDe Ley, J. 1980. A rapid, simple and simultaneous detection of 2-keto-, 5-keto- and 2,5-diketogluconic acids by thin-layer chromatography in culture media of acetic acid bacteria. -Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt.1. Orgin., Reihe C.1: 178–181.

    Google Scholar 

  • Gosselé, F., Swings, J. andDe Ley, J. 1980. Growth factor requirements ofGluconobacter. -Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt.1. Orgin., Reihe C.1: 348–350.

    Google Scholar 

  • Hall, A. N., Tiwari, K. S. andWalker, T. K. 1952. The influence of pH value and of carbon source on the nutritional requirements ofAcetobacter suboxydans. -Biochem. J., Proc Biochem. Soc.51: xxxvi.

    Google Scholar 

  • Halvorson, H. 1972. Utilization of singlel-amino acids as sole source of carbon and nitrogen by bacteria. -Can. J. Microbiol.18: 1647–1650.

    CAS  PubMed  Google Scholar 

  • Janke, A., Janke, R. G. undPerczel, S. 1963. Beiträge zur Kenntnis des Abbaues der Aminosäuren durch Essigsäurebakteriën. -Arch. Mikrobiol.45: 7–26.

    Article  CAS  PubMed  Google Scholar 

  • Jlli, H. U., Müller, J. andEttlinger, L. 1965. Der Einfluß der C-Quelle auf den Wuchsstoffbedarf von Essigsäurebakterien. -Pathol. Microbiol.28: 1005–1009.

    CAS  Google Scholar 

  • Kerwar, S. S., Cheldelin, V. H. andParks, L. W. 1964. Valine-isoleucine metabolism inAcetobacter suboxydans and the inhibition of growth by valine. -J. Bacteriol.88: 179–186.

    CAS  PubMed  Google Scholar 

  • Leisinger, T. 1965. Untersuchungen zur Systematik und Stoffwechsel der Essigsäurebakterien. -Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 2. Orig.119: 329–376.

    CAS  Google Scholar 

  • Monard, D., Hütter, R. etEttlinger, L. 1967. Auxotrophie dictée par la source d'énergie chezAcetobacter aceti. -Pathol. Microbiol.30: 966–971.

    CAS  Google Scholar 

  • O'Sullivan, J. 1974. Growth inhibition ofAcetobacter aceti byl-threonine andl-homoserine: the primary regulation of the biosynthesis of amino acids of the aspartate family. -J. Gen. Microbiol.85: 153–159.

    PubMed  Google Scholar 

  • Rao, M. R. R. andStokes, J. L. 1953. Nutrition of acetic acid bacteria. -J. Bacteriol.65: 405–412.

    CAS  PubMed  Google Scholar 

  • Shamberger, R. J. 1960. Amino acid requirements ofAcetobacter suboxydans. Thesis. Oregon State College.

  • Swings, J., Gillis, M., Kersters K., De Vos, P., Gosselé, P. andDe Ley, J. 1980.Frateuria, a new genus for “Acetobacter aurantius”. -Int. J. Syst. Bacteriol.30: 547–556.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gosselé, F., Van den Mooter, M., Verdonck, L. et al. The nitrogen requirements ofGluconobacter, Acetobacter andFrateuria . Antonie van Leeuwenhoek 47, 289–296 (1981). https://doi.org/10.1007/BF02350779

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02350779

Keywords

Navigation