Skip to main content
Log in

Antifungal spectrum and fungicidal mechanism of an N-terminal peptide of bovine lactoferrin

  • Original Articles
  • Published:
Journal of Infection and Chemotherapy

Abstract

The antifungal spectrum and fungicidal mechanism of an N-terminal peptide of bovine lactoferrin (lactoferricin B), an antimicrobial peptide produced by gastric pepsin digestion of bovine lactoferrin, were investigated. The susceptibility of pathogenic yeasts and dermatophytes to the peptide varied in a species-dependent and strain-dependent manner. Dematiaceous fungi and dimorphic fungi were susceptible to the peptide (range of MIC values: 0.63 to 10 μg/mL). In the case of nonpigmented hyphomycetes and zygomycetes, most strains exhibited resistance to the peptide (MIC:>80 μg/ mL). This peptide killedCandida albicans dose dependently without inducing a change in cell wall stability against osmotic stress. The peptide at 10 μg/ml immediately induced the release of K+ fromC. albicans cells and pH increases in cell suspensions. These pharmacological activities were more potent than those for miconazole nitrate, a well-known antifungal agent that interferes with membrane synthesis and function. These in vitro findings suggest that the lactoferrin oligopeptide has potent membrane disrupting activity against this yeast and suggests that in vivo LF-B studies would be useful to further understand host defenses and to develop improved therapeutic agents against yeast infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brock JH. Lactoferrin in human milk: its role in iron absorption and protection against enteric infection in newborn infants. Arch Dis Child 1980;55:417–421.

    CAS  PubMed  Google Scholar 

  2. Reiter B. The biological significance of lactoferrin. Int J Tissue React 1983;5:87–96.

    CAS  PubMed  Google Scholar 

  3. Sánchez L, Miguel C, Brock JH. Biological role of lactoferrin. Arch Dis Child 1992;67:657–661.

    PubMed  Google Scholar 

  4. Soukka T, Tenovuo J, Lenander-Lumikari M. Fungicidal effect of human lactoferrin againstCandida albicans. FEMS Microbiol Lett 1992;69:223–228.

    CAS  PubMed  Google Scholar 

  5. Palma C, Cassone A, Serbousek D, Pearson CA, Djeu JY. Lactoferrin release and interleukin-1, interleukin-6, and tumor necrosis factor production by human polymorphonuclear cells stimulated by various lipopolysaccharides: relationship to growth inhibition ofCandida albicans. Infect Immun 1992;60:4604–4611.

    CAS  PubMed  Google Scholar 

  6. Tomita M, Bellamy W, Takase M, Yamauchi K, Wakabayashi H, Kawase K. Potent antibacterial peptides generated by pepsin digestion of bovine lactoferrin. J Dairy Sci 1991;74:4137–4142.

    CAS  PubMed  Google Scholar 

  7. Bellamy W, Takase M, Yamauchi K, Wakabayashi H, Kawase K, Tomita M. Identification of the bactericidal domain of lactoferrin. Biochim Biophys Acta 1992;121:130–136.

    Google Scholar 

  8. Bellamy W, Takase M, Wakabayashi H, Kawase K, Tomita M. Antibacterial spectrum of lactoferricin B, a potent bactericidal peptide derived from the N-terminal region of bovine lactoferrin. J Appl Bacteriol 1992;73:472–479.

    CAS  PubMed  Google Scholar 

  9. Jones EM, Smart A, Bloomberg G, Burgess L, Millar MR. Lactoferricin, a new antimicrobial peptide. A Appl Bacteriol 1994;77:208–214.

    CAS  Google Scholar 

  10. Bellamy W, Wakabayashi H, Takase M, Kawase K, Shimamura S, Tomita M. Kining ofCandida albicans by lactoferricin B, a potent antimicrobial peptide derived from the N-terminal region of bovine lactoferrin. Med Microbiol Immunol 1993;182:97–105.

    Article  CAS  PubMed  Google Scholar 

  11. Bellamy W, Yamauchi K, Wakabayashi H, Takase M, Takakura N, Shimamura S, Tomita M. Antifungal properties of lactoferricin B, a peptide derived from the N-terminal region of bovine lactoferrin. Lett Appl Microbiol 1994;18:230–233.

    CAS  Google Scholar 

  12. Itoyama T, Aoki Y, Hiratani T, Uchida K, Yamaguchi H. In vitro antifungal activity of omoconazole nitrate, a new imidazole antimycotic. J Antibiot (Tokyo) 1993;46:773–780.

    CAS  Google Scholar 

  13. Yamaguchi H, Hiratani T, Iwata K, Yamamoto Y. Studies of the mechanism of antifungal action of aculeacin A. J Antibiot (Tokyo) 1982;35:210–219.

    CAS  Google Scholar 

  14. Hiratani T, Yamaguchi H. Studies on the mode of antifungal action of bifonazole. Chemotherapy (Tokyo) 1984;32:829–841.

    CAS  Google Scholar 

  15. Cope JE. Mode of action of miconazole onCandida albicans: effects on growth, viability and K+ release. J Gen Microbiol 1980;19:245–251.

    Google Scholar 

  16. Tomita M, Takase M, Bellamy W, Shimamura S. A review: The active peptide of lactoferrin. Acta Paediatr Jpn 1994;36:585–591.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Wakabayashi, H., Hiratani, T., Uchida, K. et al. Antifungal spectrum and fungicidal mechanism of an N-terminal peptide of bovine lactoferrin. J Infect Chemother 1, 185–189 (1996). https://doi.org/10.1007/BF02350646

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02350646

Key words

Navigation