Skip to main content
Log in

Adaptive edge localisation approach for quantitative coronary analysis

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

Lack of reliability, user dissatisfaction and errors in determining coronary vessel wall characteristics are challenging issues in quantitative coronary analysis (QCA). A new approach is proposed for QCA that tackles these issues. The proposed approach extracts the coronary vessel edges by applying dynamic programming techniques that use human-based decision criteria, adaptive edge detection and feature-based cost minimisation. This approach uses image gradient, image intensity, boundary continuity and adaptive thresholding to gain maximum quality assurance. The validation of this approach was conducted through modelled phantoms and real X-ray angiograms. The results show that the accuracies obtained were 0.0116 mm and 0.06 mm, respectively, and the precisions were 0.0263 mm, and 0.04 mm, respectively. The proposed approach is reliable, reproducible and user friendly and provides high precision compared with recently published results. Furthermore, the significance of the proposed approach and its limitations are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Fahoum, A. S., andReza, A. M. (2001): ‘Combined edge crispiness and statistical differencing for deblocking JPEG compressed images’,IEEE Trans. Image Process.,10, pp. 1288–1298

    Google Scholar 

  • Al-Fahoum, A. S., Al-Omari, F., andAl-Jarrah, M. (2002): ‘A new edge tracking mechanism for quantitative coronary analysis.’ Proc. 9th Int. Workshop on Systems, signals and image processing, Manchester, England, pp. 566–573

  • Al-Fahoum, A. S. (2002): ‘A new iterative approach for quantitative coronary analysis’, ICBME2002, Swissotel The Stamford, Singapore, D4I-0930, p. 121

  • Bresler, Y., andMacowski, A. (1988): ‘Three-dimensional reconstruction from projections with incomplete and noisy data by object estimation’,IEEE Trans. Acoust. Speech Signal Process.,35, pp. 1139–1152

    Google Scholar 

  • Brown, B. G., Bolson, E. L., andDoge, H. T. (1986): ‘Quantitative computer techniques for analyzing coronary arteriograms’,Prog. Cardiovasc. Dis.,28, pp. 403–418

    Google Scholar 

  • Canny, J. (1986): ‘A computational approach to edge detection’,IEEE Trans. Pattern Anal. Mach. Intell.,8, pp. 679–698

    Google Scholar 

  • Carey, W. K., Chung, D. B., andHemami, S. S. (1999): ‘Regularity-preserving image interpolation’,IEEE Trans. Image Process.,8, pp. 1293–1297

    Google Scholar 

  • Chan, R., Karl, W. C., andLees, R. S. (2000): ‘A new model-based technique for enhanced small-vessel measurements in X-ray cine-angiograms’,IEEE Trans. Med. Imag.,19, pp. 243–255

    Google Scholar 

  • Eichel, P., Delp, E., Koral, K., andBuda, A. (1988): ‘A method for a fully automatic definition of coronary arterial edge from cine-angiograms’,IEEE Trans. Med. Imag.,7, pp. 313–320

    Google Scholar 

  • Figueiredo, M. A. T., andLeitao, J. M. N. (1995): ‘A nonsmoothing approach to the estimation of vessel contours in angiograms’,IEEE Trans. Med. Imag.,14, pp. 162–172

    Google Scholar 

  • Fleagle, S., Johnson, M., Wilbricht, C., Skorton, D., Wilson, R., White, C., Marcus, M., andCollins, C. (1989): ‘Automated analysis of coronary arterial morphology in cine, angiograms: geometric and physiologic validation in humans’,IEEE Trans. Med. Imag.,8, pp. 387–400

    Google Scholar 

  • Fleming, R. W., Kikeeide, R. C., Smalling, R., andGould, K. L. (1991): ‘Patterns in visual interpretation of coronary arteriograms as detected by quantitative coronary arteriography’,J. Am. Coll. Cardiol.,18, pp. 945–951

    Google Scholar 

  • Greenspan, H., Laifenfeld, M., Einav, S., andBarnea, O. (2001): ‘Evaluation of center-line extraction algorithms in quantitative coronary angiography’,IEEE Trans. Image Process.,20, pp. 928–941

    Google Scholar 

  • Gurley, J. C., Nissen, S. E., Booth, D. C., andDeMaria, A. N. (1992): ‘Influence of operator and patient dependent variables on suitability of automated quantitative coronary arteriography for routine clinical use’,J. Am. Coll. Cardiol.,19, pp. 1237–1243

    Google Scholar 

  • Herrington, D. M., Siebes, M., andWalford, G. D. (1993): ‘Sources of error in quantitative coronary angiography’,Cathet. Cardiovasc. Diagn.,29, pp. 314–321

    Google Scholar 

  • Khadra, L., Al-Fahoum, A. S., andAl-Nashash, H. (1997): ‘Detection of life threatening cardiac arrhythmias using wavelet transformation’,Med. Biol. Eng. Comput.,35, pp. 626–632

    Google Scholar 

  • Klein, A. K., Lee, F., andAmini, A. A. (1997): ‘Quantitative coronary angiography with deformable spline models’,IEEE Trans. Med. Imag.,16, pp. 468–482

    Google Scholar 

  • Liu, I., andSun, Y. (1993): ‘Recursive tracking of vascular networks in angiograms based on the detection-deletion scheme’,IEEE Trans. Med. Imag.,12, pp. 334–341

    Google Scholar 

  • Mancini, G. B. J. (1991): ‘Quantitative coronary arteiographic methods in the interventional catheterization laboratory: an update and perspective’,J. Am. Coll. Cardiol.,17, pp. 23B-33B

    Google Scholar 

  • Pappas, T., andLim, J. (1988): ‘A new method for estimation of coronary artery dimensions in angiograms’,IEEE Trans. Acoust. Speech Signal Process.,36, pp. 1501–1513

    Article  Google Scholar 

  • Reiber, J. H. C., Goedhart, B., Brand, G., Schiemanack, L., andZwet, P. V. (1997): ‘Quantitative coronary arteriography: current status and future’,Heart Vessels,12, pp. 209–211

    Google Scholar 

  • Skorton, D. J., andCollins, S. N. (1985): ‘New directions in cardiac imaging’,Ann. Int. Med.,102, pp. 795–799

    Google Scholar 

  • Sonka, M., Winniford, M. D., andCollins, S. M. (1995): ‘Robust simultaneous detection of coronary borders in complex images’,IEEE Trans. Med. Imag.,14, pp. 151–161

    Google Scholar 

  • Sonka, M., Reddy, G. K., Winniford, M. D., andCollins, S. M. (1997): ‘Adaptive approach to accurate analysis of small-diameter vessels in cine-angiograms’,IEEE Trans. Med. Imag.,16, pp. 87–94

    Google Scholar 

  • Sun, Y. (1989): ‘Automated identification of vessel contours in coronary arteriograms by an adaptive tracking algorithm’,IEEE Trans. Med. Imag.,8, pp. 78–88

    Google Scholar 

  • Sun, Y. (1990): ‘Spatial frequency characteristics of vessel geometry and densitometry in coronary angiograms’,Opt. Eng.,29, pp. 1255–1259

    Article  Google Scholar 

  • Zwet, P. V., andReiber, J. H. C. (1992): ‘A new algorithm to detect coronary boundaries: the gradient field transform’,Comput. Cardiol., pp. 107–110

  • Zwet, P. V., andReiber, J. H. C. (1994): ‘A new approach for the quantification of complex lesion morphology: the gradient field transform; Basic principles and validation results’,J. Am. Coll. Cardiol.,24, pp. 216–224

    Google Scholar 

  • Zwet, P. V., Nettesheim, M., Gerbrands, J. J., andReiber, J. H. C. (1998): ‘Derivation of optimum filters for the detection of coronary arteries’,IEEE Trans. Med. Imag.,17, pp. 108–120

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Al-Fahoum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Fahoum, A.S. Adaptive edge localisation approach for quantitative coronary analysis. Med. Biol. Eng. Comput. 41, 425–431 (2003). https://doi.org/10.1007/BF02348085

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02348085

Keywords

Navigation