Skip to main content
Log in

Pneumothorax detection using computerised analysis of breath sounds

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

The primary objective of the study was to investigate the effects of pneumothorax (PTX) on breath sounds and to evaluate their use for PTX diagnosis. The underlying hypothesis is that there are diagnostic breath sound changes with PTX. An animal model was created in which breath sounds of eight mongrel dogs were acquired and analysed for both normal and PTX states. The results suggested that pneumothorax was associated with a reduction in sound amplitude, a preferential decrease in high-frequency acoustic components and a reduction in sound amplitude variation during the respiration cycle (p<0.01 for each, using the Wilcoxson signed-rank test). Although the use of diminished sound amplitude for PTX diagnosis assumes availability of baseline measurements, this appears unnecessary for high-frequency reduction or sound amplitude changes over the respiratory cycle. Further studies are warranted to test the clinical feasibility of the method in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chowdhury, S. K., andMajumder, A. K. (1981): ‘Digital spectrum analysis of respiratory sound’,IEEE Trans. Biomed. Eng.,28, pp. 784–788

    Google Scholar 

  • Dalmay, F., Antonini, M. T., Marquet, P., andMenier, R. (1995): ‘Acoustic properties of the normal chest’,Eur. Respir. J.,8, pp. 1761–1769

    Article  Google Scholar 

  • Gavriely, N., Palti, Y., andAlroy, G. (1981): ‘Spectal characteristics of normal breath sounds’,J. Appl. Physiol.,50, pp. 307–314

    Google Scholar 

  • Gavriely, N., Nissan, M., Rubin, A., andCugell, D. W. (1995): ‘Spectral characteristics of chest wall breath sounds in normal subjects’,Thorax,50, pp. 1292–1300

    Google Scholar 

  • Gavriely, N., andCugell, D. W. (1996): ‘Airflow effects on amplitude and spectral content of normal breath sounds’,Am. J. Physiol.,80, pp. 5–13

    Google Scholar 

  • Hallgren, R. C., Huang, S. M., Mcmahon, S. M., andShockey, T. P. (1982): ‘Breath sounds: development of a system for measuring and analysis’,J. Clin. Eng.,7, pp. 135–141

    Google Scholar 

  • Hardin, J. C., andPatterson, J. L. (1979): ‘Monitoring the state of human airways by analysis of respiratory sound’,Acta Astronautica,6, pp. 1137–1151

    Article  Google Scholar 

  • Jarvis, C. (1992): ‘Physical examination and health assessment’ (WB Sanders Company, Philadelphia, 1992), p. 507

    Google Scholar 

  • Jones, F. (1988): ‘Poor breath sounds with good voice sounds: A sign of bronchial stenosis’,Chest,93, pp. 312–313

    Google Scholar 

  • Kraman, S. S., andWang, P. M. (1990): ‘Airflow-generated sound in a hollow canine airway cast’,Chest,97, pp. 461–466

    Google Scholar 

  • Leblanc, P., Macklem, P. T., andRoss, W. (1970): ‘Breath sounds and distribution of pulmonary ventilation’,Am. Rev. Respir. Dis.,102, pp. 10–16

    Google Scholar 

  • Mansy, H. A., Sandler, R. H., andRoyston, T. J. (2001): ‘Acoustic characteristics of air cavities at low audible frequencies with application to pneumoperitoneum diagnosis’,Med. Biol. Eng. Comput.,39, pp. 159–168

    Article  Google Scholar 

  • Mansy, H. A., Royston, T. J., Balk, R. A., andSandler, R. H. (2002): ‘Pneumothorax detection using pulmonary acoustic transmission measurements’,Med. Biol. Eng. Comput.,40, pp. 520–525

    Google Scholar 

  • Morse, P. M., andIngrad, K. U. (1968): ‘Theoretical acoustics’ (McGraw-Hill, New York, 1968), p. 761

    Google Scholar 

  • Munson, B. R., Young, D. F., andOkiishi, T. H. (1988): ‘Fundamentals of fluid mechanics’ (John Wiley and Sons, Inc, New York, 1998), p. 495

    Google Scholar 

  • Olson, D., Bogyi, M., Schwartz, D. B., andHammersley, J. R. (1984): ‘Relationship of tracheal breath sound to airflow’,Am. Rev. Respir. Dis.,129, p. A256

    Google Scholar 

  • Pasterkamp, H., Kraman, S. S., andWodicka, G. R. (1997): ‘Respiratory sounds. Advances beyond the stethoscope’,Am. J. Respir. Crit. Care Med.,156, pp. 974–987

    Google Scholar 

  • Ploysongsang, Y., Martin, R. R., Ross, W. R., Loudon, R. G., andMacklem, P. T. (1977): ‘Breath sounds and regional ventilation’,Am. Rev. Resp. Dis.,116, pp. 187–199

    Google Scholar 

  • Ploysongsang, Y., Macklem, P., andRoss, W. (1978): ‘Distribution of regional ventilation measured by breath sounds’,Am. Rev. Resp. Dis.,117, pp. 657–664

    Google Scholar 

  • Wodicka, G. R., andShannon, D. C. (1990): ‘Transfer function of sound transmission in the subglottal human respiratory system at low frequencies’,J. Appl. Physiol.,69, pp. 2126–2130

    Google Scholar 

  • Wodicka, G. R., Aguirre, A., Defrain, P. D., andShannon, D. C. (1992): ‘Phase delay of pulmonary acoustic transmission from trachea to chest wall’,IEEE Trans. Biomed. Eng.,39, pp. 1053–1058

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mansy, H.A., Royston, T.J., Balk, R.A. et al. Pneumothorax detection using computerised analysis of breath sounds. Med. Biol. Eng. Comput. 40, 526–532 (2002). https://doi.org/10.1007/BF02345450

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02345450

Keywords

Navigation