Skip to main content
Log in

Acoustic characteristics of air cavities at low audible frequencies with application to pneumoperitoneum detection

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

Air accumulations within living organisms are sometimes pathologic. An example is free air within the abdomen from perforation of the intestines (a condition called pneumoperitoneum). The objectives of the described research were to define the acoustic signatures of abdominal air cavities at low frequencies and to investigate the feasibility of using these signatures for pneumoperitoneum diagnosis. The central hypothesis was that low-frequency vibro-acoustic property changes are detectable using broad-band acoustic excitation applied at the abdominal surface. Band-limited white noise (0-3200 Hz) was introduced at the abdominal surface of sedated dogs and response was measured by a surface vibro-acoustic sensor. The transfer function and coherence were estimated from these measurements. The presence of pneumoperitoneum caused increased resonances and anti-resonances (p<0.01). Measures of the latter parameters were proposed and evaluated to quantitatively measure their magnitude. Resonant spectral peaks of more than 3dB were consistent with pneumoperitoneum (p<0.01), and both resonance and anti-resonance increased with condition severity (p<0.03). The data also suggest a possible reduction in the resonant and anti-resonant frequencies with decreasing air cavity volumes (p=0.14) as supported by theoretical predictions. Finally, anti-resonance was also found to be associated with a drop in coherence. These findings suggest that the proposed technique may be useful in the diagnosis of pneumoperitoneum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker, S. R. (1995): ‘Diagnosis of minimal to moderate pneumoperitoneum’,Abdom. Imaging,20, pp. 492–494

    Article  Google Scholar 

  • Baker, S. R. (1996): ‘Imaging of pneumoperitoneum’,Abdom. Imaging,21, pp. 413–414

    Article  Google Scholar 

  • Bejvan, S. M., andGodwin, J. D. (1996): ‘Pneumomediastinum: old signs and new signs’,AJR,166, pp. 1041–1048

    Google Scholar 

  • Braccini, G., Lamacchia, M., Boraschi, P., Bertoletti, L., Marrucci, A., Goletti, O., andPerri, G. (1996): ‘Ultrasound versus plain film in the detection of pneumoperitoneum’,Abdom. Imaging,21, pp. 404–412

    Article  Google Scholar 

  • Cho, C. C., andBaker, S. R. (1994): ‘Extraluminal air: diagnosis and significance’,Radiol. Clin. N. Am.,32, pp. 829–844

    Google Scholar 

  • Donnerberg, R. L., Druzgalski, C. K., Hamlin, R. L., Davis, G. L., Campbell, R. M., andRice, D. A. (1980): ‘Sound transfer function in the congested canine lung’,Br. J. Dis. Chest,74, pp. 23–31

    Google Scholar 

  • Gao, L., Parker, K. J., Alam, S. K., andLerner, R. M. (1995): ‘Sonoelasticity imaging: theory and experimental verification’,J. Acoust. Soc. Am.,97, pp. 3875–3886

    Article  Google Scholar 

  • Kraman, S. S., andBohandana, A. B. (1989): ‘Transmission to the chest of sound introduced at the mouth’,J. Appl. Physiol.,66, pp. 278–281

    Google Scholar 

  • Leighton, T. G. (1994): ‘The acoustic bubble’ (Academic Press, San Diego, CA), p. 139

    Google Scholar 

  • Levine, M. S., Scheiner, J. D., Rubesin, S. E., Laufer, I., andHerlinger, H. (1991): ‘Diagnosis of pneumoperitoneum on supine abdominal radiographs’,Am. J. Radiol.,156, pp. 731–735

    Google Scholar 

  • Menuck, L., andSiemers, P. T. (1976): ‘Pneumoperitoneum: importance of right upper quadrant features’,Am. J. Radiol.,127, pp. 753–756

    Google Scholar 

  • Miller, R. F., andNelson, S. W. (1971): ‘The roentgenological demonstration of tiny amounts of free intra-peritoneal gas: experimental and clinical studies’,Am. J. Radiol.,112, pp. 574–585

    Google Scholar 

  • Mirvis, S. E., Gens, D. R., andShanmuganathan, S. (1992): ‘Rupture of the bowel after blunt abdominal trauma: diagnosis with CT’,Am. J. Radiol.,159, pp. 1217–1221

    Google Scholar 

  • Morse, P. M., andIngard, K. U. (1986): ‘Theoretical acoustics’ (Princeton University Press, Princeton, NJ), pp. 571

    Google Scholar 

  • Miridha, M., andOdman, S. (1986): ‘Noninvasive method for the assessment of subcutaneous oedema’,Med. Biol. Eng. Comput.,24, pp. 393–398

    Google Scholar 

  • Oestreicher, H. L. (1951): ‘Field and impedance of an oscillating sphere in viscoelastic medium with an application to biophysics’,J. Acoust. Soc. Am.,23, pp. 707–714

    MathSciNet  Google Scholar 

  • Prabavathi, C., andVendhan, C. P. (1994): ‘Calculation of the acoustic modes of spherical cavity by using wedge element’,J Sound Vibration,172, pp. 136–141

    Article  Google Scholar 

  • Paster, S. B., andBrogdon, B. G. (1976): ‘Roentgenographic diagnosis of pneumoperitoneum’,J. Am. Med. Assoc.,235, pp. 1264–1267

    Article  Google Scholar 

  • Pereira, J. M., Mansour, J. M., andDavis, B. R. (1990): ‘Analysis of shear wave propagation in skin: application to an experimental procedure’,J. Biomech.,23, pp. 745–751

    Article  Google Scholar 

  • Potts, R. O., Chrisman Jr, D. A., andBuras Jr, E. M. (1983): ‘The dynamic mechanical properties of human skinin vivo’,J. Biomech.,16, pp. 365–372

    Article  Google Scholar 

  • Royston, T. R., Mansy, H. A., andSandler, R. H. (1999): ‘Excitation and propagation of surface waves on a viscoelastic half space with application to medical diagnosis’,J. Acoust. Soc. Am.,106, pp. 3678–3686

    Google Scholar 

  • Sherck, J., Shatney, C., Sensaki, K., andSelivanov, V. (1994): ‘The accuracy of computerized tomography in the diagnosis of blunt small bowel trauma’,Am. J. Surg.,168, pp. 670–675

    Article  Google Scholar 

  • Stapakis, J. C., andThickman, D. (1992): ‘Diagnosis of pneumoperitoneum: abdominal CT vs. upright chest film’,J. Comput. Assist. Tomogr.,16, pp. 713–716

    Google Scholar 

  • Strassberg, M. (1953): ‘The pulsation frequency of nonspherical gas bubbles in liquids’,J. Acoust. Soc. Am.,25, pp. 536–539

    Google Scholar 

  • Von Gierke, H. E., Oestreicher, H. L., Franke, E. K., Parrack, H. O., andVon Wittern, W. W. (1952): ‘Physics of vibrations in living tissues’,J. Appl. Physiol.,4, pp. 886–900

    Google Scholar 

  • Wodicka, G. R., andShannon, D. C. (1990): ‘Transfer function of sound transmission in subglottal human respiratory system at low frequencies’,J. Appl. Physiol.,69, pp. 2126–2130

    Google Scholar 

  • Wodicka, G. R., Aguirre, A., Defrain, P. D., andShannon, D. C. (1992): ‘Phase delay of pulmonary acoustic transmission from trachea to chest wall’,IEEE Trans. Biomed. Eng.,39, pp. 1053–1059

    Article  Google Scholar 

  • Wodicka, G. R., Lam, A. M., Bhargava, B., andSunkel, D. (1993): ‘Acoustic impedance of the maternal abdomen’,J. Acoust. Soc. Am.,94, pp. 13–18

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. A. Mansy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mansy, H.A., Royston, T.J. & Sandler, R.H. Acoustic characteristics of air cavities at low audible frequencies with application to pneumoperitoneum detection. Med. Biol. Eng. Comput. 39, 159–167 (2001). https://doi.org/10.1007/BF02344798

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02344798

Keywords

Navigation