Skip to main content
Log in

Mathematical study of the role of non-linear venous compliance in the cranial volume-pressure test

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

The role of the cerebral venous bed in the cranial volume-pressure test was examined by means of a mathematical model. The cerebral vascular bed was represented by a single arterial compartment and two venous compartments in series. The lumped-parameter formulation for the vascular compartments was derived from a one-dimensional theory of flow in collapsible tubes. It was assumed in the model that the cranial volume is constant. The results show that most of the additional volume of cerebrospinal fluid (ΔVCSF) was accommodated by collapse of the cerebral venous bed. This profoundly altered the venous haemodynamics and was reflected in the cranial pressure PCSF. The cranial volume-pressure curve obtained from the model was consistent with experimental data; the curve was flat for 0<-ΔVCSF<-20 ml and 35<-ΔVCSF<-40 ml, and steep for 20<-ΔVCSF<-35 ml and ΔVCSF>-40 ml. For ΔVCSF>25 ml and PCSF>5.3 kPa (40 mmHg), cerebral blood flow dropped. When PCSF was greater than the mean arterial pressure, all the veins collapsed. The conclusion of the study was that the shape of the cranial volume-pressure curve can be explained by changes in the venous bed caused by various degrees of collapse and/or distension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Attinger, E. O. (1964): ‘The cardiovascular system’, inAttinger, E. O. (Ed.): ‘Pulsatile blood flow’ (McGraw-Hill, 1964), pp. 1–14

  • Auer, L. M., andMcKenzie, E. T. (1984): ‘Physiology of the cerebral venous system’, inKapp, J. P., andSchmidek, H. H. (Eds): ‘The cerebral venous system and its disorders’ (Grune & Stratton Inc., 1984), pp. 169–227

  • Bosnjak, R., andKordas, M. (2002): ‘Circulatory effects of internal jugular vein compression: a computer simulation study’,Med. Biol. Eng. Comput.,40, pp. 423–431

    Google Scholar 

  • Brook, B. (1997): ‘The effect of gravity on the haemodynamics of the giraffe jugular vein’. PhD thesis, University of Leeds, UK

    Google Scholar 

  • Chopp, M., Portnoy, H. D., andBranch, M. S. (1983): ‘Hydraulic model of the cerebrovascular bed. Understanding the volumepressure test’Neurosurg.,13, pp. 5–11

    Google Scholar 

  • Cirovic, S., Walsh, C., andFraser, W. D. (2000): ‘A mathematical model of cerebral perfusion subjected to Gz acceleration’,Aviat. Space Environ. Med.,71, pp. 514–521

    Google Scholar 

  • Cirovic, S., Walsh, C., andFraser, W. D. (2001): ‘A mechanical model of cerebral circulation during sustained acceleration’,Aviat. Space Environ. Med.,72, pp. 704–712

    Google Scholar 

  • Collins, R., andMaccario, J. A. (1979): ‘Blood flow in the lung’,J. Biomech.,12, pp. 373–395

    Article  Google Scholar 

  • Constantinesku, V. N. (1995): ‘Steady parallel flow of incompressible fluids’ in ‘Laminar viscous flow’ (Springer, 1995), pp. 110–137

  • Ekstedt, J. (1978): ‘CSF hydrodynamic studies in man: 2 Normal hydrodynamic variables related to CSF pressure and flow’,J. Neurol. Neurosurg. Psychiat.,41, pp. 345–353

    Google Scholar 

  • Fung, Y. C. (1996): ‘Blood flow in arteries’ in ‘Biodynamics: Circulation’ (W.B. Springer Verlag, 1996), pp. 77–157

  • Guyton, A. C., andHall, J. E. (1996): ‘The circulation’, in ‘Textbook of medical physiology’ (W.B. Saunders Company, 1996), pp. 161–293

  • Hamilton, W. F., Woodbury, R. A., andHarper, H. T. (1943): ‘Arterial cerebrospinal and venous pressures in man during cough and strain’,Am. J. Physiol.,141, pp. 42–50

    Google Scholar 

  • Kamm, R. D., andPedley, T. J. (1989): ‘Flow in collapsible tubes: A brief review’,J. Biomech. Eng.,111, pp. 117–179

    Google Scholar 

  • Ladurner, M., andAuer, L. M. (1984): ‘Alterations of the cerebral blood volume’, inKapp, J. P., andSchmidek, H. H. (Eds): ‘The cerebral venous system and its disorders’ (Grune & Stratton Inc., 1984), pp. 229–248

  • Langfitt, T. W., Kassel, N. F., andWeinstein, J. D. (1965): ‘Cerebral blood flow with intracranial hypertension’,Neurology,15, pp. 761–773

    Google Scholar 

  • Luce, J. M., Huseby, J. S., Kirk, W., andButler, J. (1982): ‘A Starling resistor regulates cerebral venous outflow in dogs’,J. Appl. Physiol.,53, pp. 1496–1503

    Google Scholar 

  • Marmarou, A., Shulman, K., andLaMorgese, J. (1975): ‘Compartmental analysis of compliance and outflow resistance of the cerebrospinal fluid system’,J. Neurosurg.,43, 523–534

    Google Scholar 

  • Marmarou, A., Shulman, K., andRosende, R. M. (1978): ‘A nonlinear analysis of the cerebrospinal fluid system and intracranial pressure dynamics’,J. Neurosurg.,48, pp. 332–344

    Google Scholar 

  • Miller, J. D., Stanek, A., andLangfitt, T. W. (1972): ‘Concepts of cerebral perfusion pressure and vascular compression during intracranial hypertension’,Prog. Brain Res.,35, pp. 411–432

    Google Scholar 

  • Moreno, A. H., Katz, A. I., Gold, L. D., andReddy, R. V. (1970): ‘Mechanics of distension of dog veins and other very tin-walled tubular structures’,Circ. Res.,27, pp. 1069–1080

    Google Scholar 

  • Nakagawa, Y., Tsuru, M., andYada, K. (1974): ‘Site and mechanism of compression of the venous system during experimental hypertension’,J. Neurosurg.,41, pp. 427–434

    Google Scholar 

  • Pedley, T. J. (1980): ‘Propagation of the pressure pulse’, in ‘The fluid mechanics of large blood vessels’ (Cambridge University Press, 1980), pp. 73–125

  • Pedley, T. J., Brook, B. S., andSeymour, R. S. (1996): ‘Blood pressure and flow rate in giraffe jugular vein’,Phil. Trans. R. Soc. Lond.,352, pp. 855–866

    Google Scholar 

  • Piechnik, S. K., Czosnyka, M., Richards, H. K., Whitfield, P. C., andPickard, J. D. (2001): ‘Cerebral venous blood outflow: A theoretical model based on laboratory simulation’,Neurosurg.,49, pp. 1214–1223

    Google Scholar 

  • Portella, G., Cormio, M., andCiterio, G. (2002): ‘Continous cerebral compliance monitoring in severe head injury: its relationship with intracranial pressure and cerebral perfusion pressure’,Acta Neurochir.,81, pp. 173–175

    Google Scholar 

  • Portnoy, H. D., andChopp, M. (1994): ‘Intracranial fluid dynamics: Interrelationship of CSF and vascular phenomena’,Pediatr. Neurosurg.,20, pp. 92–98

    Google Scholar 

  • Press, W. H., Teulkolsky, S. A., Vetterling, W. T., andFlannery, B. P. (1996): ‘Root finding and nonlinear sets of equations’, in ‘Numerical recipes in Fortran: the art of scientific computation’ (Cambridge University Press, 1996), pp. 340–376

  • Pucher, R., Kato, Y., Mokry, M., andAuer, L. M. (1991): ‘Cerebrovascular response to changes of cerebral venous pressure and cerebrospinal fluid pressure’,Acta Neurochirurgica,109, pp. 52–56

    Article  Google Scholar 

  • Raisis, J. E., Kindt, G. W., McGillicuddy, J. E., andGiannnotta, S. L. (1979): ‘The effects of primary elevation of cerebral venous pressure on cerebral haemodynamics and intracranial pressure’,J. Surg. Res.,26, pp. 101–107

    Article  Google Scholar 

  • Rushmer, R. F., Beckman, E. L., andLee, D. (1947): ‘Protection of the cerebral circulation by the cerebrospinal fluid under the influence of radial acceleration’,Am. J. Physiol.,151, pp. 459–468

    Google Scholar 

  • Rushmer, R. F. (1976): ‘Peripheral vascular control’, in ‘Cardiovascular dynamics’ (W.B. Saunders Company, 1976), pp. 132–161

  • Sano, H., Kawase, T., andToya, S. (1983): ‘The changes in the cerebral microcirculation during increased intracranial pressure’, inAuer, L. M., andLoew, F. (Eds): ‘The cerebral veins: an experimental and clinical update’ (Springer-Verlag, 1983), pp. 231–238

  • Schmidt, B., Klingelhofer, J., Schwarze, J. J., Sander, D., andWittich, I. (1997): ‘Noninvasive prediction of intracranial pressure curves using transcranial doppler ultrasonography and blood pressure curves’,Stroke,28, pp. 2465–2472

    Google Scholar 

  • Seymour, K. S., Shenkin, H. A., andShmidt, C. F. (1948): ‘The effect of increased intracranial pressure on cerebral circulatory function in man’,J. Clin. Invest.,27, pp. 493–499

    Google Scholar 

  • Shapiro, A. H. (1977): ‘Steady flow in collapsible tubes’,J. Biomech. Eng.,99, pp. 126–147

    Google Scholar 

  • Shapiro, K., Marmarou, A., andShulman, K. (1980): ‘Characterization of clinical CSF dynamics and neural axis compliance using the pressure-volume index: I The normal pressure-volume index’,Ann. Neurol.,7, pp. 508–514

    Article  Google Scholar 

  • Sheng, C., Sarwal, S. N., Watts, K. C., andMarble, A. E. (1995): ‘Computational simulation of blood flow in human systemic circulation incorporating an external force field’,Med. Biol. Eng. Comput.,33, pp. 8–17

    Google Scholar 

  • Shulman, K., andVerdier, G. (1967): ‘Cerebral vascular resistance changes in response to cerebrospinal fluid pressure’,Am. J. Physiol.,213, pp. 1084–1088

    Google Scholar 

  • Sorek, S., Bear, J., andKarni, Z. (1989): ‘Resistances and compliances of a compartmental model of the cerebrovascular system’,Ann. Biomed. Eng.,17, pp. 1–12

    Google Scholar 

  • Sullivan, H. G., andAllison, J. D. (1985): ‘Physiology of cerebrospinal fluid’, inWilkins, R., andRengachary, S. (Eds): ‘Neurosurgery’ (McGraw Hill, 1985), pp. 2125–2135

  • Takemae, T., Kosugi, Y., Ikebe, J., Kumangi, Y., Matsuyama, K., andSaito, K. (1987): ‘A simulation study of intracranial pressure increment using an electric circuit model of cerebral circulation’,IEEE Trans. Biomed. Eng.,34, pp. 958–969

    Google Scholar 

  • Ursino, M. (1988a): ‘A mathematical study of human intracranial hydrodynamics. Part 1—The cerebrospinal fluid pressure’,Ann. Biomed. Eng.,16, pp. 379–401

    Google Scholar 

  • Ursino, M. (1988b): ‘A mathematical study of human intracranial hydrodynamics. Part 2—Simulation of the clinical tests’,Ann. Biomed. Eng.,16, pp. 403–416

    Google Scholar 

  • Ursino, M., andDi Giammarco, P. (1991): ‘A mathematical model of the relationship between cerebral blood volume and intracranial pressure changes: The generation of plateau waves’,Ann. Biomed. Eng.,19, pp. 15–42

    Google Scholar 

  • Ursino, M., Iezzi, M., andStoccetti, N. (1995): ‘Intracranial pressure dynamics in patients with acute brain damage: A critical analysis with the aid of a mathematical model’,IEEE Trans. Biomed. Eng.,42, pp. 529–540

    Article  Google Scholar 

  • Wesley, R. L. R., Vaishnav, R. N., Fuchs, J. C. A., Patel, D. J., andGreenfield, J. C. Jr (1975): ‘Static linear and non-linear elastic properties of normal and arterialized venous tissue in dog and man’,Circ. Res.,37, pp. 509–520

    Google Scholar 

  • Wiedeman, M. P. (1963): ‘Dimensions of blood vessels from distributing artery to collecting vein’,Circ. Res.,12, pp. 375–378

    Google Scholar 

  • Yada, K., Nakagaw, Y., andTsuru, M. (1973): ‘Circulatory disturbance of the venous system during experimental intracranial hypertension’,J. Neurosurg.,39, pp. 723–729

    Google Scholar 

  • Zagzoul, M., andMarc-Vergnes, J. P. (1986): ‘A global mathematical model of the cerebral circulation in man’,J. Biomech.,19, pp. 1015–1022

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. D. Fraser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cirovic, S., Walsh, C. & Fraser, W.D. Mathematical study of the role of non-linear venous compliance in the cranial volume-pressure test. Med. Biol. Eng. Comput. 41, 579–588 (2003). https://doi.org/10.1007/BF02345321

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02345321

Keywords

Navigation