Skip to main content
Log in

Relationships of femoral venous [K+], [H+],\(P_{o_2 } \), osmolality, and [orthophosphate] with heart rate, ventilation, and leg blood flow during bicycle exercise in athletes and non-athletes, osmolality, and [orthophosphate] with heart rate, ventilation, and leg blood flow during bicycle exercise in athletes and non-athletes

  • Published:
European Journal of Applied Physiology and Occupational Physiology Aims and scope Submit manuscript

Summary

The relationships of femoral venous [K+], [H+], osmolality (OSM),\(P_{o_2 } \), and [inorganic phosphate] ([Pi]) with heart rate (HR), ventilation (\(\dot V_E \)), and calculated leg blood flow (Q) were investigated during bicycle exercise in endurance trained (TR) and untrained (UT) test subjects. At a given\(\dot V_{o_2 } \) the increases of [K+], [H+], OSM, [Pi] and the decrease of\(P_{o_2 } \) were significantly lower in TR than in UT. In the same proportion the increases ofHR,\(\dot V_E \), andQ were diminished. Thus in TR and UT identical and highly significantly correlated regression lines of [K+], [H+], OSM, [Pi], and\(P_{o_2 } \) withHR,\(\dot V_E \), andQ were obtained. These constituents changed in the same proportion as the relative\(\dot V_{o_2 } \) in TR and UT. No relationships with [Na+], [Ca++], and [Mg++] were found. By means of a multiple regression analysis the partial influence of K+, H+, OSM,\(\dot V_{o_2 } \), and Pi upon the total change ofHR, E, andQ was estimated, to compare with data from infusion experiments. The findings were discussed in view of the hypothesis that these candidates may provide a possible linkage between metabolic events, circulatory, and ventilatory adjustments during work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achar, M. V. S.: Effects of injection of Locke solution with higher concentration of potassium into femoral artery on blood pressure in cats. J. Physiol. (Lond.)198, 115–116(1968)

    Google Scholar 

  2. Åstrand, P. O., Ryhming, J.: A nomogram for calculation of aerobic capacity (physical fitness) from puls rate during submaximal work. J. appl. Physiol.7, 218–221 (1954)

    PubMed  Google Scholar 

  3. Aurell, M., Carlsson, M., Grimby, G., Hood, B.: Plasma concentration and urinary excretion of certain electrolytes during supine work. J. appl. Physiol.22, 633–638 (1967)

    CAS  PubMed  Google Scholar 

  4. Barcroft, H., Foley, T. H., McSwiney, R. R.: Experiments on the liberation of phosphate from active human muscle, and on the action of phosphate on human blood vessels. J. Physiol. (Lond.)210, 34–35 (1970)

    Google Scholar 

  5. Bartes, J. T.: Estimation of the mass of the body segments. WADC Technical Report 57-260, Ohio, April 1957

  6. Berne, R. M., Rubio, R., Dobson, J. G., Curnish, R. R.: Adenosine and adenine nucleotides as possible mediators of cardiac and skeletal muscle blood flow regulation. Circulat. Res. Suppl. I, 115–119 (1971)

    Google Scholar 

  7. Böning, D., Schweigart, U., Tibes, U., Hemmer, B.: Influences of exercise and endurance training on the oxygen dissociation curve of blood under in vivo and in vitro conditions. Europ. J. appl. Physiol.34, 1–10 (1975)

    Google Scholar 

  8. Brashear, R. E., Ross, J. C., Smith, C. N.: Rest and exercise plasma nueleotide levels. Clin. Res.15, 433 (1967)

    Google Scholar 

  9. Clausen, J. P., Lassen, N. A.: Muscle blood flow during exercise in normal man studied by the133Xenon clearance method. Cardiovasc. Res.5, 245–254 (1971)

    CAS  PubMed  Google Scholar 

  10. Dobson, J. G., Rubio, R., Berne, R. F.: Role of adenine nucleotides, adenosine and inorganic phosphate in the regulation of skeletal muscle blood flow. Circulat. Res.29, 375–384 (1973)

    Google Scholar 

  11. Documenta Geigy: Wissenschaftliche Tabellen. Basel: Geigy 1962

    Google Scholar 

  12. Donald, K. W., Wormland, P. N., Taylor, S. H., Bishop, J. M.: Changes in the oxygen content of femoral venous blood and leg blood flow during leg exercise in relation to cardiac output response. Clin. Sci.16, 567–591 (1957)

    CAS  PubMed  Google Scholar 

  13. Emerson, T. E., Jr., Parker, J. L., Jelks, G. W.: Effect of local acidosis on vascular resistance in dog skeletal muscle. Proc. Soc. exp. Biol. N.Y.145, 273–276 (1974)

    CAS  Google Scholar 

  14. Freyschuss, U., Strandell, T.: Limb circulation during arm and leg exercise in supine position. J. appl. Physiol.23, 163–170 (1967)

    CAS  PubMed  Google Scholar 

  15. Gerber, G., Roth, W.: fAber das Verhalten von anorganischem Phosphat, Glukose, Lactat und Hfimoglobin im menschlichen Blut vor, während and nach Fahrradergometerbelastung. Med. u. Sport9, 218–222 (1969)

    Google Scholar 

  16. Grimby, G., Häiggendahl, E., Saltin, B.: Local Xenon clearance from the quadrieeps muscle during exercise in man. J. appl. Physiol.22, 305–310 (1967)

    CAS  PubMed  Google Scholar 

  17. Haddy, F. J., Scott, J. B.: Metabolically linked vasoactive chemicals in local regulation of blood flow. Physiol. Rev.48, 688–707 (1968)

    CAS  PubMed  Google Scholar 

  18. Hilton, S. M., Vrbová: Inorganic phosphate — a new candidate for mediator of functional vasodilatation in skeletal muscle. J. Physiol. (Lond.)206, 29–30 (1970)

    Google Scholar 

  19. Hnik, P., Hudlicka, O., Kucera, J., Payne, R.: Activation of muscle afferents by nonproprioceptive stimuli. Amer. J. Physiol.217, 1451–1458 (1969)

    CAS  PubMed  Google Scholar 

  20. Hodgson, H. J. F., Matthews, P. B. C.: The ineffectiveness of excitation of the primary endings of the muscle spindle by vibration as a respiratory stimulant in the decerebrate cat. J. Physiol. (Lond.)194, 555–563 (1968)

    CAS  Google Scholar 

  21. Hohorst, H.-J.:l-(+)-Lactat, Bestimmung mit Lactat-Dehydrogenase und NAD. In: Methoden der enzymatischen Analyse, Bd. II (H. U. Bergmeyer, Hrsg.), S. 1425–1429. Weinheim (Bergstr.): Verlag Chemie 1970

    Google Scholar 

  22. Jorfeldt, L., Wahren, J.: Leg blood flow during exercise in man. Clin. Sci.41, 459–473 (1971)

    CAS  PubMed  Google Scholar 

  23. Keul, J., Doll, E.: Intermittent exercise: Metabolites, PO2, and acid-base equilibrium in the blood. J. appl. Physiol.34, 220–225 (1973)

    CAS  PubMed  Google Scholar 

  24. Keul, J., Doll, E., Keppler, D.: Muskelstoffwechsel. München: Barth 1969

    Google Scholar 

  25. Kjellmer, S.: The potassium ion as a vasodilator during muscular exercise. Acta physiol. scand.63, 460–468 (1965)

    CAS  PubMed  Google Scholar 

  26. Koller, S.: Statistische Auswertung der Versuchsergebnisse. In: Handbuch der physiol. und pathol. chem. Anal., Bd. 2 (K. Lang, E. Lehnartz, Hrsg.), S. 931–1036. Berlin-Göttingen-Heidelberg: Springer 1955

    Google Scholar 

  27. Lange-Andersen, K.: The cardiovascular system in exercise. In: Exercise physiology (H. B. Falls, ed.), pp. 79–128. New York-London: Academic Press 1968

    Google Scholar 

  28. Lasser, R. F., Schoenfeld, M. R., Allen, D. F., Friedberg, C. K.: Reflex circulatory effects elicited by hypertonic and hypotonic solutions injected into femoral and brachial arteries of the dogs. Circular. Res.8, 913–919 (1960)

    CAS  Google Scholar 

  29. Laurell, H., Pernow, B.: Effect of exercise on plasma potassium in man. Acta physiol. scand.66, 241–242 (1966)

    CAS  PubMed  Google Scholar 

  30. Linder, A.: Statistische Methoden ffir Naturwissenschaftler, Mediziner und Ingenieure. Basel-Stuttgart: Birkhäuser 1957

    Google Scholar 

  31. Lundvall, J., Mellander, S., White, T.: Hyperosmolality and vasodilatation in human skeletal muscle. Acta physiol. scand.77, 224–233 (1969)

    CAS  PubMed  Google Scholar 

  32. Margaria, R., Cerretelli, P.: The respiratory system and exercise. In: Exercise physiology (H. B. Falls, ed.), pp. 43–78. New York-London: Academic Press 1968

    Google Scholar 

  33. Pirnay, F., Dujardin, J., Deroanne, R., Petit, J. M.: Muscular exercise during intoxication by carbon monoxide. J. appl. Physiol.31, 573–575 (1971)

    CAS  PubMed  Google Scholar 

  34. Raberger, G., Weissel, M., Kraupp, O., Chirikdijan, J. J.: Circulatory and metabolic effects of adenosine in the hind limb of intact dogs. Naunyn-Sehmiedeberg's Arch. Pharmacol.277, 227–237 (1973)

    CAS  Google Scholar 

  35. Rowell, L. B.: Human cardiovascular adjustments to exercise and thermal stress. Physiol. Rev.54, 75–159 (1974)

    CAS  PubMed  Google Scholar 

  36. Rowell, L. B., Taylor, H. L., Wang, J., Carlson, W. S.: Saturation of arterial blood with oxygen during maximal exercise. J. appl. Physiol.19, 284–286 (1964)

    CAS  PubMed  Google Scholar 

  37. Rubio, R., Berne, R. M., Dobson, J. G., Jr.: Sites of adenosine production in cardiac and skeletal muscle. Amer. J. Physiol.225, 938–953 (1973)

    CAS  PubMed  Google Scholar 

  38. Scott, J. B., Rudko, M., Radawski, D., Haddy, J.: Role of osmolarity, K+, H+, Mg++, and O2 in local blood flow regulation. Amer. J. Physiol.218, 338–345 (1970)

    CAS  PubMed  Google Scholar 

  39. Skinner, N. S., Powell, W. J.: Action of oxygen and potassium on vascular resistance of dog skeletal muscle. Amer. J. Physiol.213, 533–540 (1967)

    Google Scholar 

  40. Siggaard-Andersen, O.: The acid-base-status of the blood, 2nd ed. Copenhagen: Munksgaard 1964

    Google Scholar 

  41. Stegemann, J., Kenner, Th.: A theory on heart rate control by muscular metabolic receptors. Arch. Kreisl.-Forsehg.64, 185–214 (1971)

    CAS  Google Scholar 

  42. Stegemann, J., Ulmer, H. V., Böning, D.: Auslösung peripherer neurogener Atmungs- und Kreislaufantriebe durch Erhöhung des CO2-Druckes in größeren Muskelgruppen. Pflügers Arch. ges. Physiol.293, 155–164 (1967)

    Article  CAS  Google Scholar 

  43. Tibes, U., Hemmer, B.: Relation among venous K+ and orthophosphate concentrations, osmolality, heart rate, and ventilation at the beginning of exercise. Pflügers Arch.339, Suppl. R 27 (1973)

  44. Tibes, U., Hemmer, B.: Peripheral drive on circulatory and ventilatory centers from muscular metabolic receptors. Pflügers Arch.347, Suppl. R 47 (1974)

  45. Tibes, U., Hemmer, B., Schweigart, U., Böning, D.: The effect of training on metabolically linked changes of blood composition, respiratory and circulatory functions. Pflügers Arch.332, Suppl. R 78 (1972)

  46. Tibes, U., Hemmer, B., Sehweigart, U., Böning, D., Fotescu, D.: Exercise acidosis as cause of electrolyte changes in femoral venous blood of trained and untrained man. Pflügers Arch.347, 145–158 (1974)

    Article  CAS  PubMed  Google Scholar 

  47. Tominaga, S., Suzuki, T., Nakamura, T.: Evaluation of roles of potassium, inorganic phosphate, osmolarity, pH, 213-01, 213-02, and adenosine or AMP in exercise and reactive hyperemias in canine hindlimb muscles. Tohoku J. exp. Med.109, 347–363 (1973)

    CAS  PubMed  Google Scholar 

  48. Treumann, F., Schroeder, W.: Tralningseinfluß auf Muskeldurchblutung und Herzfrequenz. Z. Kreisl.-Forsch.37, 1024–1033 (1968)

    Google Scholar 

  49. Varnauskas, E., Björntorp, P., Fahlen, M., Prerovsky, I., Sternberg, J.: Effects of physical training on exercise blood flow and encymatic activity in skeletal muscle. Cardiovasc. Res.4, 418–422 (1970)

    CAS  PubMed  Google Scholar 

  50. Wahren, J., Jorfeldt, L.: Determination of leg blood flow during exercise in man: an indicatordilution technique based on femoral venous dye infusion. Clin. Sci. Molec. Med.45, 135–146 (1973)

    Google Scholar 

  51. Wildenthal, K., Mierzwiak, D. S., Skinner, N. S., Jr., Mitchell, J. H.: Potassium-induced cardiovascular and ventilatory reflexes from the dog hindlimb. Amer. J. Physiol.215, 542–548 (1968)

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

A preliminary report of this work has been given elsewhere [45]

Supported by Bundesinstitut für Sportwissenschaft

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tibes, U., Hemmer, B., Böning, D. et al. Relationships of femoral venous [K+], [H+],\(P_{o_2 } \), osmolality, and [orthophosphate] with heart rate, ventilation, and leg blood flow during bicycle exercise in athletes and non-athletes, osmolality, and [orthophosphate] with heart rate, ventilation, and leg blood flow during bicycle exercise in athletes and non-athletes. Europ. J. Appl. Physiol. 35, 201–214 (1976). https://doi.org/10.1007/BF02336194

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02336194

Key words

Navigation