Skip to main content
Log in

The hypothalamus in MPTP-induced parkinsonism

  • Original Articles
  • Published:
The Italian Journal of Neurological Sciences Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP) has been shown to produce a parkinsonian syndrome in humans and other primates. Recent studies have demonstrated that in humans the hypothalamus has the highest binding density for (3H) MPTP, which corresponds to monoamine oxidase type B (MAO-B). There is evidence that the conversion of MPTP to the toxic compound MPP+ takes place in the hypothalamus; subsequently, MPP+ is transported to the striatal system, where destruction of nigrostriatal dopamine neurons occurs. Thus, the hypothalamus appears to be a primary target organ of MPTP toxicity. This assumption is supported by the observation that monkeys exposed to MPTP exhibit extensive pathological lesions in the hypothalamus which are manifested clinically by the development of life-threatening anorexia requiring forced feeding to overcome. We discuss the clinical implications of MPTP-induced hypothalamic damage to the pathophysiology of MPTP-induced parkinsonism and to Parkinson disease. It is suggested that consideration of hypothalamic involvement in MPTP-induced parkinsonism may provide a broader understanding of the pathophysiology of parkinsonism and may, in addition, account for the preliminary observations that MAO-B inhibitors retard the progression of Parkinson disease and possibly prolong life expectancy.

Sommario

La l-metil-4-fenil-1,2,5,6 tetraidropiridina (MPTP) produce una sindrome parkinsoniana nell'uomo e in alcuni primati; studi recenti hanno dimostrato che nell'uomo l'ipotalamo ha la più alta capacità di legare il (3H) MPTP. È dimostrato che la conversione dell'MPTP nel composto tossico MPP+ si svolge nell'ipotalamo; successivamente lo MPP+ è trasportato al sistema striato e quindi si determina una distribuzione dei neuroni della dopamina nigrostriatale. Risulta così che l'ipotalamo è l'organo bersaglio primario della tossicità dell'MPTP e ciò è dimostrato dalla osservazione che le scimmie esposte al-l'azione dell'MPTP presentano estese lesioni patologiche nell'ipotalamo e manifestano clinicamente una anoressia di tale gravità da richiedere l'alimentazione forzata. Noi discutiamo le implicazioni cliniche del danno ipotalamico da MPTP con la patofisiologia del parkinsonismo indotto da MPTP e col morbo di Parkinson. Riteniamo che l'interessamento ipotalamico nel Parkinson indotto da MPTP può dare una più ampia interpretazione della fisiopatofisiologia del parkinsonismo e può dare spiegazione di osservazioni preliminari che dimostrano che i MAO-B inibitori ritardano la progressione del morbo di Parkinson e prolungano probabilmente l'aspettativa di vita.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birkmayer W., Knoll J., Riederer P., et al.:Increased life expectancy resulting from addition of L-deprenyl to Madopar treatment in Parkinson's diseases: A longterm study. J. Neural Transm, 64:113–127, 1985.

    Article  CAS  PubMed  Google Scholar 

  2. Butterworth R.F., Belanger F., Barbeau A.:Hypokinesia is produced by anterolateral hypothalamic 6-hydroxydopamine lesions and its reversal by some antiparkinson drugs. Pharmacol Biochem Behav, 8:41–45, 1977.

    Google Scholar 

  3. Chiba K., Trevor A., Castagnoli N.:Metabolism of the neurotoxic amine, MPTP, by brain monoamine oxidase. Biochem Biophys Res Comm, 120:574–578, 1984.

    Article  CAS  PubMed  Google Scholar 

  4. Costall B., Taylor R.J.:The role of telencephalic dopaminergic systems in the mediation of apomorphine-stereotypes behavior. Eur J Pharmacol, 24:8–24, 1973.

    Article  CAS  PubMed  Google Scholar 

  5. Davis G.C., Williams A.C., Markey S.P., et al.:Chronic parkinsonism secondary to intravenous injection of meperidine analogues. Phychiatry Res., 1:249–254, 1979.

    CAS  Google Scholar 

  6. Eisler T., Thorner M.O., MacLeod R.M., et al.:Prolactin secretion in Parkinson disease. (3H) Neurology, 31:1356–1359, 1981.

    CAS  PubMed  Google Scholar 

  7. Enz A., Hefti F., Frick W.:Acute administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) reduces dopamine and serotonin but acceletates norepinephrine metabolism in the rat brain: effect of chronic pretreatment with MPTP. Eur J Pharmacol, 101:37–44, 1984.

    Article  CAS  PubMed  Google Scholar 

  8. Forno L.S.:Pathology of parkinsonism: a preliminary reports of 24 cases. J Neurosurg, 24 (suppl): 266–271, 1966.

    Google Scholar 

  9. Forno L.S., Langston J.W., DeLanney L.E., et al.:Locus coeruleus lesions and eosinophilic inclusions in MPTP-treated monkeys, Ann Neurol. 20:449–455, 1986.

    Article  CAS  PubMed  Google Scholar 

  10. Fuller R.W., Hahn R.A., Snoddy H.D.:Depletion of cardiac norepinephrine in rats and mice 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) Biochem. Pharmacol. 33:2957–2960, 1984

    CAS  PubMed  Google Scholar 

  11. Gibb W.R.G., Lees A.J., Jenner P., Marsden C.D.:The dopamine neurotoxin N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) produces histological lesions in the hypothalamus of the common marmoset. Neurosci Letters, 65:79–83, 1986.

    Article  CAS  Google Scholar 

  12. Halliwell B.:Manganese ions, oxidation reactions and the super-oxide radical. Neurotoxicology (Park Forest. II.) 5:113–118, 1984.

    CAS  Google Scholar 

  13. Heikkila R.E., Mazino L., Cabat F.S., et al.:Protection against the dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine by monoamine oxidase inhibitors. Nature. 311:467–469, 1984.

    Article  CAS  PubMed  Google Scholar 

  14. Hirano M., Uchimura H., Salto M.:Regional distribution of monoamine oxidase activity for 5-hydroxytryptamine and tyramine in hypothalamus of the rat. Brain Res, 93:558–563, 1975.

    Article  CAS  PubMed  Google Scholar 

  15. Hirano A., Zimmerman H.M.:Alzheimer's neurofibrillary changes: a topographic study, Arch Neurol. 7:227–243, 1962.

    CAS  PubMed  Google Scholar 

  16. Irwin I., Langston J.W.:Selective accumulation of MPP+ in the substantia nigra: A key to neurotoxicity? Life Sci, 6:207–212, 1985.

    Google Scholar 

  17. Javitch J.A., Uhl G.R., Sydney S.H.:Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine: characterisation and localization of receptor binding sites in rat and human brain. Proc Natl Acad Sci U.S.A., 81:4591–4595, 1984.

    CAS  PubMed  Google Scholar 

  18. Javitch, J.A., Snyder S.H.:Uptake of MPP+ by dopamine neurons explains selectivity of parkinsonism-inducing neurotoxin, MPTP, Eur Pharmacol, 106:455–456, 1984.

    CAS  Google Scholar 

  19. Javitch J.A., D'Amato R.J., Strittmatter S.M., et al.:Parkinsonian inducing neurotoxic MPTP-uptake of the metabolite N-methyl-4-phenyl-tyramine by dopamine neurons explains behavioral toxicity. Proc Natl Acad. Sci USA, 82:2173–2177, 1985.

    CAS  PubMed  Google Scholar 

  20. Javoy-Agid F., Ruberg M., Pique L. et al.:Biochemistry of the hypothalamus in Parkinson's disease. Neurology, 34:672–675, 1984.

    CAS  PubMed  Google Scholar 

  21. Knoll J., Dallo J., Yen TT.:Striatal dopamine. sexual activity and lifespan. Longevity of rats treated with (-) deprenyl. Life Sci, 45:525–531, 1989.

    Article  CAS  PubMed  Google Scholar 

  22. Langston J.W., Forno L.S.:The hypothalamus in Parkinson disease. Ann Neurol 3:129–133, 1978.

    Article  CAS  PubMed  Google Scholar 

  23. Langston J.W., Ballard P., Tetrud J.W., Irwin I.:Chronic parkinsonism in humans due to a product of meperidine-analog synthesis, Science, 219:979–980, 1983.

    CAS  PubMed  Google Scholar 

  24. Langston J.W., Irwin I., Langston E.B., et al.:Pargyline prevents MPTP-induced parkinsonism in primates. Science, 225: 1480–1482, 1984.

    CAS  PubMed  Google Scholar 

  25. Leibowitz S.F., Weiss G.F., Shor-Posner G.:Hypothalamic serotonin: Pharmacological, biochemical, and behavioral analyses of its feeding-suppressive action. Clin Neuropharmacol., 11 (suppl 1): S51-S71, 1988.

    CAS  PubMed  Google Scholar 

  26. Lewy F.H.:Die Lehre vom Tonus und der Bewegung. Berlin: Springer, 1923.

    Google Scholar 

  27. Lipman I.J., Boykin M.E., Flora R.E.:Glucose intolerance in Parkinson's disease. J. Chronic Dis, 27:573–579, 1974.

    Article  CAS  PubMed  Google Scholar 

  28. Martignoni E., Micieli G., Cavallini A. et al.:Autonomic disorders in idiopathic parkinsonism. J Neural Transm, 22 (suppl): 149–161, 1986.

    CAS  Google Scholar 

  29. Nisbett R.E., Braver A., Jusela G. et al.:Age and sex differences in behaviors mediated by the ventromedial hypothalamus. J. Comp Physiol Psychol, 88:735–746, 1975.

    CAS  PubMed  Google Scholar 

  30. Ohama E., Ikuta F.:Parkinson's disease: distribution of Lewy bodies and monoamine neuron system. Acta Neuropathol, 34:311–319, 1976.

    Article  CAS  PubMed  Google Scholar 

  31. Orskov L., Jakobsen J., Dupont E., et al. Autonomic function in parkinsonian patients relates to duration of disease. Neurology, 37:1173–1178, 1987.

    CAS  PubMed  Google Scholar 

  32. Piha S.J., Rine J.O., Rinne U.K.:Autonomic dysfunction in recent onset and advanced Parkinson's disease. Clin Neurol Neurosurg, 90:221–226, 1988.

    Article  CAS  PubMed  Google Scholar 

  33. Pique L., Jegou S., Bertagna X., et al.:Propiomelanocortin peptides in the human hypothalamus: comparative study between normal subjects and Parkinson patients. Neurosci Letters, 54:141–146, 1985.

    CAS  Google Scholar 

  34. Plum F., Van Uitert R.:Nonendocrine diseases and disorders of the hypothalamus. In: S. Reichlin, R.J. Baldessarini and J.B. Martin (eds). The Hypothalamus. New York: Raven Press, pp 415–473, 1978.

    Google Scholar 

  35. Poirier L.J.:The development of animal models for studies in Parkinson's disease. In, F.H. McDowell and C.H. Marham (eds.) Recent advances in Parkinson's disease, Philadelphia: F.A. Davis, pp. 83–117, 1971.

    Google Scholar 

  36. Reznikoff G., Manaker S., Parsons B., et al.:Similar distribution of monoamine oxidase (MAO) and parkinsonian toxin (MPTP) binding sites in human brain. Neurology, 35: 1451–1419, 1985.

    Google Scholar 

  37. Russ H., Mihatsch W., Przuntek H.:The MPTP model: an update. In: H. Przuntek and P. Riederer (es.) Early Diagnosis and Preventive Therapy in Parkinson's Disease. New York: Springer Verlag pp. 237–242, 1989.

    Google Scholar 

  38. Ricaurte G.A., Irwin I., Forno L.S., DeLanney L.E., Langston E., Langston J.W.:Aging and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridineinduced degeneration of dopaminergic neurons in the substantia nigra. Brain Res, 403:43–51, 1987.

    Article  CAS  PubMed  Google Scholar 

  39. Sandyk R., Iacono R.P.:The hypothalamus in Parkinson's disease. Inter J Neurosci, 33:257–259, 1986.

    Google Scholar 

  40. Sandyk R., Iacono R.P., Bamford C.R.:The hypothalamus in Parkinson disease. Ital J Neurol Sci. 8:227–234, 1987.

    CAS  PubMed  Google Scholar 

  41. Sandyk R.:Mechanisms of recovery in MPTP-induced parkinsonism. Neuroscience, 27:727–729, 1988.

    Article  CAS  PubMed  Google Scholar 

  42. Sandyk R., Kay S.R.:Relationship of third ventricular width to drug-induced parkinsonism: Support for the role of the hypothalamus in the pathophysiology of Parkinson's disease. Inter J Neurosci (in press).

  43. Shen R.S., Abell C.W., Gesser W., Brossi A.:Serotonergic conversion of MPTP and dopaminergic accumulation of MPP+. FEBS, 189:225–230, 1985.

    Article  CAS  Google Scholar 

  44. Sirinathsinghji DJS:Intrahypotalamic infusions of a synthetic heroin substitute, N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, potentiate mating behavior in the female rat. Brain Res. 346:130–135, 1985.

    Article  CAS  PubMed  Google Scholar 

  45. Sirinathsinghji D.J.S.:Suppression of mating behaviour in the male rat by intracerebroventricular infusions of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Brain Res, 407:364–368, 1987.

    CAS  PubMed  Google Scholar 

  46. Spiegel E.A., Wycis H.T., Schor H., et al.:The incidence of vegetative symptoms in Parkinson patients with and without bradykinesia. 3rd Parkinson Symposium, Edinburgh, May 1968.

  47. Sundstrom E., Johnsson G.:Pharmacological interference with the neurotoxic action of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on central catecholamine neurons in the mouse. Eur J Pharmacol, 110:293–299, 1985.

    Article  CAS  PubMed  Google Scholar 

  48. Tetrud J.W.:The effect of deprenyl (selegiline)=on the natural history of Parkinson's disease. Science, 245:519–522, 1989.

    CAS  PubMed  Google Scholar 

  49. Von Buttlar-Brentano K.:Zur Lebensgeschichte des Nucleus basalis, tuberomammalaris, supraopticus, und paraventricularis unter normalen und pathogenen Bedingungen. J. Himforsch, 1:337–419, 1954.

    Google Scholar 

  50. Wieczorek C.M., Parsons B., Rainbow T.C.:Quantitative autoradiography of 3 H MPTP binding sites in rat brain. Eur J Pharmacol, 98:453–454, 1984.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sandyk, R., Iacono, R.P. & Kay, S.R. The hypothalamus in MPTP-induced parkinsonism. Ital J Neuro Sci 11, 367–372 (1990). https://doi.org/10.1007/BF02335939

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02335939

Key-Words

Navigation