Skip to main content
Log in

Permeability in large plant cells and in models

  • Published:
Ergebnisse der Physiologie und experimentellen Pharmakologie

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Adam, N. K.: Surface films cellulose derivatives on aqueous solution. Trans. Faraday Soc.29, 90 (1933).

    CAS  Google Scholar 

  2. André, G. etE. Demoussy: L'absorption sélective du potassium par les plantes. Bull. Soc. Chim. biol. Paris7, 806 (1925).

    Google Scholar 

  3. Auger, D.: Phénomènes pulsatoires électriques des cellules de Characées. C. r. Soc. Biol. Paris107, 1495 (1931).

    Google Scholar 

  4. —: Relation entre le courant d'action et la cyclose protoplasmique chezNitella. C. r. Soc. Biol. Paris108, 1131 (1931).

    Google Scholar 

  5. Bailey, I. W. andC. Zirkle: The cambium and its derivative tissues. VI. The effects of hydrogen ion concentration in vital staining. J. gen. Physiol.14, 363 (1930–31).

    Google Scholar 

  6. Bayliss, W. M.: Principles of general physiology. 4th ed. London 1924.

  7. Bernstein, J.: Elektrobiologie. Braunschweig 1912.

  8. Beutner, R.: Die Entstehung elektrischer Ströme in lebenden Geweben. Stuttgart 1920.

  9. Blinks, L. R.: OnValonia andHalicystis in eastern America. Science (N. Y.)65, 429 (1927).

    Google Scholar 

  10. —: High and low frequency measurements withLaminaria. Science (N. Y.)68, 235 (1928).

    CAS  Google Scholar 

  11. —: The injection of sulfates intoValonia. J. gen. Physiol.12, 207 (1928–29).

    Article  CAS  Google Scholar 

  12. —: Protoplasmic potentials inHalicystis. J. gen. Physiol.13, 223 (1929–30).

    Article  CAS  Google Scholar 

  13. —: The direct current resistance ofValonia. J. gen. Physiol.13, 361 (1929–30).

    Article  Google Scholar 

  14. —: The direct current resistance ofNitella. J. gen. Physiol.13, 495 (1929–30).

    Article  Google Scholar 

  15. —: The variation of electrical resistance with applied potential. I. IntactValonia ventricosa. J. gen. Physiol.13, 793 (1929–30).

    Article  Google Scholar 

  16. —: The variation of electrical resistance with applied potential. II. Thin collodion films. J. gen. Physiol.14, 127 (1930–31).

    CAS  Google Scholar 

  17. —: The variation of electrical resistance with applied potential. III. ImpaledValonia ventricosa. J. gen. Physiol.14, 139 (1930–31).

    CAS  Google Scholar 

  18. —: Migration of anthocyan pigment in plant cells during the flow of electric current, and its reversal by acids and alkalies. Proc. Soc. exper. Biol. a. Med.29, 1186 (1931–32).

    Google Scholar 

  19. —: Protoplasmic potentials inHalicystis. II. The effects of potassium on two species with different saps. J. gen. Physiol.16, 147 (1932–33).

    Article  CAS  Google Scholar 

  20. —: A secondary bio-electric effect of potassium. Proc. Soc. exper. Biol. a. Med.30, 756 (1932–33).

    Google Scholar 

  21. —: Protoplasmic potentials inHalicystis. III. The effect of ammonia. J. gen. Physiol.17, 109 (1933–34).

    Article  CAS  Google Scholar 

  22. Blinks, L. R.: Remarks, on K. S. Cole's paper on conductance. Cold Spring Harbor symposia on quantitative biology, Vol. 1. In press 1933.

  23. — andA. H. Blinks: Two genera of algae new to Bermuda. Bull. Torrey bot. Club57, 389 (1930–31).

    Google Scholar 

  24. E. S. Harris andW. J. V. Osterhout: Studies on stimulation inNitella. Proc. Soc. exper. Biol. a. Med.26, 836 (1928–29).

    Google Scholar 

  25. — andA. G. Jacques: The cell sap ofHalicystis. J. gen. Physiol.13, 733 (1929–30).

    Article  Google Scholar 

  26. Brauner, L.: Über polare Permeabilität. Ber. dtsch. bot. Ges.48, 109 (1930).

    CAS  Google Scholar 

  27. —: Untersuchungen über die Elektrolyt-Permeabilität und Quellung einer leblosen natürlichen Membran. Jb. Bot.63, 513 (1930).

    Google Scholar 

  28. Briggs, G. E.: The accumulation of electrolytes in plant cells—a suggested mechanism. Proc. roy. Soc. B107, 248 (1930).

    Google Scholar 

  29. —: The absorption of salts by plant tissues considered as ionic interchange. Ann. of Bot.182, 301 (1932).

    Google Scholar 

  30. — andA. H. K. Petrie: Respiration as a factor in the ionic equilibria between plant tissues and external solutions. Proc. roy. Soc. B108, 317 (1931).

    Google Scholar 

  31. Brooks, M. M.: The penetration of cations into living cells. J. gen. Physiol.4, 347 (1921–22).

    Article  Google Scholar 

  32. —: The penetration of arsenic into living cells. Proc. Soc. exper. Biol. a. Med.20, 39 (1922).

    Google Scholar 

  33. —: Studies on the permeability of living and dead cells. I. New quantitative observations on the penetration of acids into living and dead cells. Publ. Health Rep.38, 1449 (1923).

    Google Scholar 

  34. —: Studies on the permeability of living and dead cells. II. Observations on the penetration of alkali bicarbonates into living and dead cells. Publ. Health Rep.38, 1470 (1923).

    Google Scholar 

  35. —: Studies on the permeability of living and dead cells. III. The penetration of certain alkalies and ammonium salts into living and dead cells. Publ. Health Rep.38, 2074 (1923).

    Google Scholar 

  36. —: Studies on the permeability of living and dead cells. IV. The penetration of trivalent and pentavalent arsenic into living and dead cells. Publ. Health Rep.38, 2951 (1923).

    Google Scholar 

  37. —: The effects of varying internal and external p h ofValonia upon penetration of arsenic. Proc. Soc. exper. Biol. a. Med.22, 148 (1924–25).

    Google Scholar 

  38. —: Studies on the permeability of living and dead cells. V. The effects of NaHCO3 and NH4Cl upon the penetration intoValonia of trivalent and pentavalent arsenic at various H-ion concentrations. Publ. Health Rep.40, 139 (1925).

    Google Scholar 

  39. —: A note on the rate of growth ofValonia macrophysa. Amer. J. Bot.12, 617 (1925).

    Google Scholar 

  40. —: The permeability of protoplasm to ions. Amer. J. Physiol.76, 116 (1926).

    Google Scholar 

  41. —: Penetration intoValonia of oxidation-reduction indicators; estimation of the reduction potential of the sap. Proc. Soc. exper. Biol. a. Med.23, 265 (1925–26).

    Google Scholar 

  42. —: Studies on the permeability of living cells. VI. The penetration of certain oxidation-reduction indicators as influenced by p h ; estimation of the r h ofValonia. Amer. J. Physiol.76, 360 (1926).

    Google Scholar 

  43. —: Studies on the permeability of living cells. VII. The effects of light of different wave-lengths on the penetration of 2,-6,-dibromo phenol indophenol intoValonia. Protoplasma (Berl.)1, 305 (1926).

    Google Scholar 

  44. —: Antagonistic action between NaCl and CaCl2, as influencing the penetration of dye intoNitella. Proc. Soc. exper. Biol. a. Med.24, 370 (1926–27).

    Google Scholar 

  45. —: The penetration of methylene blue into living cells. Proc. nat. Acad. Sci. U.S.A.13, 821 (1927).

    Google Scholar 

  46. —: Studies on the permeability of living cells. VIII. The effect of chlorides upon the penetration of dahlia intoNitella. Protoplasma (Berl.)2, 420 (1927).

    Google Scholar 

  47. —: Studies on the permeability of living cells. IX. Does methylene blue itself penetrate? Univ. California Publ. Zool.31, 79 (1927).

    Google Scholar 

  48. —: Further studies on penetration of methylene blue. Proc. Soc. exper. Biol. a. Med.25, 704 (1927–28).

    Google Scholar 

  49. —: Factors affecting penetration of methylene blue and trimethyl thionine into living cells. Proc. Soc. exper. Biol. a. Med.26, 290 (1928–29).

    Google Scholar 

  50. —: Studies on the permeability of living cells. X. The influence of experimental conditions upon the penetration of methylene blue and trimethyl thionine. Protoplasma (Berl.)7, 46 (1929).

    Google Scholar 

  51. —: Studies on the permeability of living cells. XI. The penetration of thionine intoValonia. Univ. California Publ. Zool.33, 287 (1930).

    Google Scholar 

  52. —: Studies on the permeability of living cells. XII. Further studies on penetration of oxidation-reduction indicators. Proc. Soc. exper. Biol. a. Med.27, 508 (1929–30).

    Google Scholar 

  53. —: The p h and the r h of the sap ofValonia and the r h of its protoplasm. Protoplasma (Berl.)10, 505 (1930).

    Google Scholar 

  54. —: The penetration of 1-naphthol-2-sulphonate indophenol,o-chloro phenol indophenol ando-cresol indophenol intoValonia. Proc. nat. Acad. Sci. U.S.A.17, 1 (1931).

    Google Scholar 

  55. —: The penetration of 1-naphthol-2-sulphonate indophenol,o-chloro phenol indophenol ando-cresol indophenol intoValonia ventricosa. J. Aghard. No XIII. Protoplasma (Berl.)16, 345 (1932).

    Google Scholar 

  56. —: Studies on the permeability of living cells. XIV. The penetration of certain oxidation-reduction indicators with different species ofValonia. Protoplasma (Berl.)17, 89 (1932).

    Google Scholar 

  57. —: Studies on the permeability of living cells. XV. A review of the penetration intoValonia ventricosa of oxidation-reduction indicators includingm-bromo phenol indophenol and guaiacol indophenol. J. Cell. comp. Physiol.3, 61 (1933).

    Google Scholar 

  58. — andS. C. Brooks: The “multiple partition coefficient” hypothesis in relation to permeability. Proc. Soc. exper. Biol. a. Med.29, 720 (1932).

    Google Scholar 

  59. Brooks, S. C.: The accumulation of ions in living cells—a nonequilibrium condition. Protoplasma (Berl.)8, 389 (1929).

    Article  CAS  Google Scholar 

  60. —: Accumulation of K in living cells. Proc. Soc. exper. Biol. a. Med.27, 75 (1929–30).

    Google Scholar 

  61. —: Composition of the cell sap ofHalicystis ovalis (Lyng.) Areschoug. Proc. Soc. exper. Biol. a. Med.27, 409 (1929–30).

    Google Scholar 

  62. Brooks, S. C.: Some aspects of the physical chemistry of permeability of ions. Contributions to Marine Biology, p. 91. Stanford Univ. Press 1930.

  63. —: Ion intake inValonia as affected by HCl and CO2. Proc. Soc. exper. Biol. a. Med.29, 933 (1931–32).

    Google Scholar 

  64. —: The rate of penetration of rubidium into living cells ofValonia and its relation to apparent ionic radii. J. Cell. comp. Physiol.2, 223 (1932–33).

    CAS  Google Scholar 

  65. —: Selective accumulation of ions in cavities incompletely surrounded by protoplasm. Biol. Bull. Mar. biol. Labor. Wood's Hole64, 67 (1933).

    CAS  Google Scholar 

  66. —: Chemical versus morphological species differences. Science (N. Y.)77, 221 (1933).

    CAS  Google Scholar 

  67. — andM. M. Brooks: The rate of penetration of dyes intoValonia with special reference to solubility theories of permeability. J. Cell. comp. Physiol.2, 53 (1932–33).

    CAS  Google Scholar 

  68. — andS. Gelfan: Bioelectric potentials inNitella. Protoplasma (Berl.)5, 86 (1928).

    Article  CAS  Google Scholar 

  69. Camlong, S. andL. Genevois: Sur la constitution minérale des chlorophycées marines. II. Bull. Stat. Biol. Arcachon27, 209 (1930).

    Google Scholar 

  70. Chambers, R.: A micro-injection study of the permeability of the starfish egg. J. gen. Physiol.5, 189 (1922–23).

    Article  CAS  Google Scholar 

  71. Cole, K. S.: Electric impedance of suspensions ofArbacia eggs. J. gen. Physiol.12, 37 (1928–29).

    CAS  Google Scholar 

  72. Colla, S.: Untersuchungen über Plasma und Plasmaströmung bei Characeen. II. Die Wirkung verschiedener Salze auf die Plasmaströmung. Protoplasma (Berl.)6, 438 (1929).

    Article  CAS  Google Scholar 

  73. Collander, R.: Über die Durchlässigkeit der Kupferferrocyanidniederschlagsmembran für Nichtelektrolyte. Kolloidchem. Beih.19, 72 (1924).

    CAS  Google Scholar 

  74. —: Über die Durchlässigkeit der Kupferferrocyanidmembran für Säuren nebst Bemerkungen zur Ultrafilterfunktion des Protoplasmas. Kolloidchem. Beih.20, 273 (1925).

    CAS  Google Scholar 

  75. —: Über die Permeabilität von Kollodiummembranen. Soc. Sci. fenn. Comment. Biol.2 (6), 1 (1926).

    CAS  Google Scholar 

  76. —: Permeabilitätsstudien anChara ceratophylla. I. Die normale Zusammensetzung des Zellsaftes. Acta bot. fenn.6, 1 (1930).

    Google Scholar 

  77. — u.H. Bärlund: Permeabilitätstudien anChara ceratophylla. II. Die Permeabilität für Nichtelektrolyte. Acta bot. fenn.11, 1 (1933).

    Google Scholar 

  78. Cook, S. F.: The effect of sudden changes of temperature on protoplasmic streaming. J. gen. Physiol.12, 793 (1928–29).

    Google Scholar 

  79. Cooper, W. C. Jr. andL. R. Blinks: The cell sap ofValonia andHalicystis. Science (N. Y.)68, 164 (1928).

    CAS  Google Scholar 

  80. M. J. Dorcas andW. J. V. Osterhout: The penetration of strong electrolytes. J. gen. Physiol.12, 427 (1928–29).

    Google Scholar 

  81. — andW. J. V. Osterhout: The accumulation of electrolytes. I. The entrance of ammonia intoValonia macrophysa. J. gen. Physiol.14, 117 (1930–31).

    Article  CAS  Google Scholar 

  82. Crozier, W. J.: Intracellular acidity inValonia. J. gen. Physiol.1, 581 (1918–19).

    Google Scholar 

  83. Czapek, F.: Biochemie der Pflanzen. 3. Aufl. Jena: Gustav Fischer 1922–25.

    Google Scholar 

  84. Damon, E. B.: Dissimilarity of inner and outer protoplasmic surfaces inValonia. II. J. gen. Physiol.13, 207 (1929–30).

    Article  CAS  Google Scholar 

  85. —: Dissimilarity of inner and outer protoplasmic surfaces inValonia. III. J. gen. Physiol.15, 525 (1931–32).

    Google Scholar 

  86. —: Bioelectric potentials inValonia. The effect of substituting KCl for NaCl in artificial sea water. J. gen. Physiol.16, 375 (1932–33).

    Article  CAS  Google Scholar 

  87. — andW. J. V. Osterhout: The concentration effect withValonia: Potential differences with concentrated and diluted sea water. J. gen. Physiol.13, 445 (1929–30).

    Article  Google Scholar 

  88. Dixon, H. H.: Variations in the permeability of leaf-cells. Sci. Proc. roy. Dublin Soc.17, 349 (1924).

    CAS  Google Scholar 

  89. East, E. M. andB. Whitte: Reactions ofValonia and ofHalicystis to colloids. J. gen. Physiol.16, 925 (1932–33).

    Google Scholar 

  90. ——: The reactions ofHalicystis and ofValonia to injections of certain proteins. J. gen. Physiol.16, 937 (1932–33).

    Google Scholar 

  91. Evans, H.: The physiology of succulent plants. Biol. Rev. Cambridge philos. Soc.7, 181 (1932).

    CAS  Google Scholar 

  92. Farkas, P.: Phasengrenzpotentiale und Dielektrizitätskonstante. Z. Elektrochem.38, 654 (1932).

    CAS  Google Scholar 

  93. Fauré-Fremiet, E.: Caractères physico-chimiques des choanoleucocytes de quelques invertébrés. Protoplasma (Berl.)6, 521 (1929).

    Article  Google Scholar 

  94. Fox, D. L.: Carbon dioxide narcosis. I. specific effects of carbon dioxide upon protoplasmic streaming and consistency inNitella and upon the life of the cell. II. The effect of carbon dioxide compared with that of the hydrogen ion. The threshold of tolerance inNitella to carbon dioxide and to the hydrogen ion. J. Cell. comp. Physiol.3, 75 (1933).

    CAS  Google Scholar 

  95. —: Carbon dioxide narcosis. III. Salt antagonisms IV. Is oxygen lack a factor in the narcotic effects of carbon dioxide? V. Water and electrolyte. inNitella during exposure to carbon dioxide. J. Cell. comp. Physiol.3, 341 (1933).

    CAS  Google Scholar 

  96. Fricke, H.: The electric capacity of suspensions of red corpuscles of a dog. Physic. Rev.26, 682 (1925).

    Google Scholar 

  97. —: The electric capacity of suspensions with special reference to blood. J. gen. Physiol.9, 137 (1925–26).

    CAS  Google Scholar 

  98. Fujita, A.: Untersuchungen über elektrische Erscheinungen und Ionendurchlässigkeit von Membranen. I. Die Potentialdifferenz an der Apfelschale. Biochem. Z.158, 11 (1925).

    CAS  Google Scholar 

  99. —: Untersuchungen über elektrische Erscheinungen und Ionendurchlässigkeit von Membranen. III. Potentiale and Pergamentmembranen. Biochem. Z.159, 370 (1925).

    CAS  Google Scholar 

  100. —: Untersuchungen über elektrische Erscheinungen und Ionendurchlässigkeit von Membranen. V. Die Eigenschaften der Membranen von amphoterem Charakter. Biochem. Z.162, 245 (1925).

    CAS  Google Scholar 

  101. —: Untersuchungen über elektrische Erscheinungen und Ionendurchlässigkeit von Membranen. VIII. Die Permeabilität der getrockneten Kollodiummembran für Nichtelektrolyte. Biochem. Z.170, 18 (1926).

    CAS  Google Scholar 

  102. Gasser, H. W. andJ. Erlanger: The role played by the sizes of the constituent fibres of a nerve trunk in determining the form of its action-potential wave. Amer. J. Physiol.80, 522 (1927).

    Google Scholar 

  103. Gellhorn, E.: Das Permeabilitätsproblem. Berlin: Julius Springer 1929.

    Google Scholar 

  104. Gicklhorn, J. u.K. Umrath: Messung elektrischer Potentiale pflanzlicher Gewebe und einzelner Zellen. Protoplasma (Berl.)4, 228 (1928).

    Article  CAS  Google Scholar 

  105. Green, A. A., A. A. Weech andL. Michaelis: Studies on permeability of membranes. VII. Conductivity of electrolytes within the membrane. J. gen. Physiol.12, 473 (1928–29).

    Google Scholar 

  106. Guggenheim, E. A.: The conception of electrical potential difference between two phases and the individual activities of ions. J. physic. Chem.33, 842 (1929).

    CAS  Google Scholar 

  107. Hansen, A.: Über Stoffbildung bei den Meeresalgen. Mitt. zool. Stat. Neapel11, 255 (1893).

    Google Scholar 

  108. Hansteen-Cranner, B.: Zur Biochemie und Physiologie der Grenzschichten lebender Pflanzenzellen. Christiania: Grøndahl and Søns 1922 [Meld. fra Norges Landbrukshøiskole2, 1 (1922)].

    Google Scholar 

  109. Hartley, H. andH. L. Raikes: The mobilities of the elementary ions in methyl alcohol. Trans. Faraday Soc.23, 393 (1927).

    CAS  Google Scholar 

  110. Harvey, E. N.: The permeability and cytolysis of eggs. Science (N. Y.)32, 565 (1910).

    Google Scholar 

  111. —: Studies on the permeability of cells. J. of exper. Zool.10, 507 (1911).

    Article  Google Scholar 

  112. —: A new type of artificial cell suitable for permeability and other biochemical studies. Biochem. Bull.2, 50 (1912).

    Google Scholar 

  113. Heilbrunn, L. V.: The colloid chemistry of protoplasm. Berlin: Gebrüder Bornträger 1928.

    Google Scholar 

  114. Henderson, V. E.: The present status of the theories of narcosis. Physiologic. Rev.10, 171 (1930).

    CAS  Google Scholar 

  115. Hoagland, D. R.: The absorption of ions by plants. Soil Sci.16, 225 (1923).

    CAS  Google Scholar 

  116. Hoagland, D. R.: The accumulation of mineral elements by plant cells. In Contributions to Marine Biology. Stanford Univ. Press, p. 131. 1930.

  117. — andA. R. Davis: The composition of the cell sap of the plant in relation to the absorption of ions. J. gen. Physiol.5, 629 (1922–23).

    Google Scholar 

  118. ——: Further experiments on the absorption of ions by plants, including observations on the effect of light. J. gen. Physiol.6, 47 (1923–24).

    Article  CAS  Google Scholar 

  119. ——: The intake and accumulation of electrolytes by plant cells. Protoplasma (Berl.)6, 610 (1929).

    Article  Google Scholar 

  120. —— andP. L. Hibbard: The influence of one ion on the accumulation of another by plant cells with special reference to experiments withNitella. Plant Physiol.3, 473 (1928).

    CAS  Google Scholar 

  121. P. L. Hibbard andA. R. Davis: The influence of light, temperature, and other conditions on the ability ofNitella cells to concentrate halogens in the cell sap. J. gen. Physiol.10, 121 (1926–27).

    Article  CAS  Google Scholar 

  122. Hobson, A. D.: The effect of fertilization on the permeability to water and on certain other properties of the surface of the egg ofPsammechinus miliaris. J. of exper. Biol.9, 69 (1932).

    Google Scholar 

  123. Höber, R.: Physikalische Chemie der Zelle und der Gewebe. 6. Aufl. Leipzig 1926.

  124. — u.J. Höber: Beobachtungen über die Zusammensetzung des Zellsaftes vonValonia utricularis. Arch. ges. Physiol.219, 260 (1928).

    Article  Google Scholar 

  125. — u.F. Hoffmann: Über das elektromotorische Verhalten von künstlichen Membranen mit gleichzeitig selektiv kationen- und selektiv anionendurchlässigen Flächenstücken. Arch. ges. Physiol.220, 558 (1928).

    Article  Google Scholar 

  126. Hörmann, G.: Studien über die Protoplasmaströmung bei den Characeen. Jena 1898.

  127. Holdheide, W.: Über Plasmoptyse beiHydrodictyon utriculatum. Planta (Berl.)15, 244 (1931).

    Article  Google Scholar 

  128. Hollenberg, G. J.: Some physical and chemical properties of the cell sap ofHalicystis ovalis (Lyngb.) Aresch. J. gen. Physiol.15, 651 (1931–32).

    Google Scholar 

  129. Hughes, A. H.: The electrical and mechanical properties of protein films. Trans. Faraday Soc.29, 211 (1933).

    Article  CAS  Google Scholar 

  130. Irwin, M.: The permeability of living cells to dyes as affected by hydrogen ion concentration. J. gen. Physiol.5, 223 (1922–23).

    Article  CAS  Google Scholar 

  131. —: The behavior of chlorides in the cell sap ofNitella. J. gen. Physiol.5, 427 (1922–23).

    Article  Google Scholar 

  132. —: The penetration of dyes as influenced by hydrogen ion concentration. J. gen. Physiol.5, 727 (1922–23).

    Article  Google Scholar 

  133. —: On the accumulation of dye inNitella. J. gen. Physiol.8, 147 (1925–28).

    Article  CAS  Google Scholar 

  134. —: Accumulation of brilliant cresyl blue in the sap of living cells ofNitella in the presence of NH3. J. gen. Physiol.9, 235 (1925–26).

    Article  CAS  Google Scholar 

  135. —: Mechanism of the accumulation of dye inNitella on the basis of the entrance of dye as undissociated molecules. J. gen. Physiol.9, 561 (1925–26).

    Article  Google Scholar 

  136. —: Exit of dye from living cells ofNitella at different pH values. J. gen. Physiol.10, 75 (1926–27).

    CAS  Google Scholar 

  137. —: The penetration of basic dye intoNitella andValonia in the presence of certain acids, buffer mixtures, and salts. J. gen. Physiol.10, 271 (1926–27).

    CAS  Google Scholar 

  138. —: Certain effects of salts on the penetration of brilliant cresyl blue intoNitella. J. gen. Physiol.10, 425 (1926–27).

    Google Scholar 

  139. —: Does methylene blue penetrate into living cells? Proc. Soc. exper. Biol. a. Med.24, 425 (1926–27).

    Google Scholar 

  140. —: On the nature of the dye penetrating the vacuole ofValonia from solutions of methylene blue. J. gen. Physiol.10, 927 (1926–27).

    Google Scholar 

  141. —: Multiple partition coefficients of penetration. Proc. Soc. exper. Biol. a. Med.25, 127 (1927–28).

    Google Scholar 

  142. —: The effect of acetate buffer mixtures, acetic acid, and sodium acetate, on the protoplasm, as influencing the rate of penetration of cresyl blue into the vacuole ofNitella J. gen. Physiol.11, 111 (1927–28).

    CAS  Google Scholar 

  143. —: Counteraction of the inhibiting effects of various substances onNitella. J. gen. Physiol.11, 123 (1927–28).

    CAS  Google Scholar 

  144. —: Spectrophotometric analysis of dye penetratingNitella from methylene blue. Proc. Soc. exper. Biol. a. Med.25, 563 (1927–28).

    Google Scholar 

  145. —: Spectrophotometric studies of pentration. IV. Penetration of trimethyl thionine intoNitella andValonia from methylene blue. J. gen. Physiol.12, 147 (1928–29).

    Article  CAS  Google Scholar 

  146. —: Predicting penetration of dyes into living cells by means of an artificial system. Proc. Soc. exper. Biol. a. Med.26, 125 (1928–29).

    Google Scholar 

  147. —: Penetration of alkaloids into vacuoles of living cells. Proc. Soc. exper. Biol. a. Med.26, 135 (1928–29).

    Google Scholar 

  148. —: Spectrophotometric studies of penetration. V. Resemblances between the living cell and an artificial system in absorbing methylene blue and trimethyl thionine. J. gen. Physiol.12, 407 (1928–29).

    Article  Google Scholar 

  149. —: The form of dye penetrating the cell as determined by the glass electrode. Proc. Soc. exper. Biol. a. Med.27, 132 (1929–30).

    Google Scholar 

  150. —: Studies on the penetration of dyes with the glass electrode. II. Penetration intoNitella from solutions of cresyl blue, azure B, and methylene blue solution. Proc. Soc. exper. Biol. a. Med.27, 991 (1929–30).

    Google Scholar 

  151. —: Studies on the penetration of dyes with the glass electrode. III. Penetration intoValonia of cresyl blue and azure B. Proc. Soc. exper. Biol. a. Med.27, 992 (1929–30).

    Google Scholar 

  152. —: Studies on penetration of dyes with glass electrode. IV. Penetration of brilliant cresyl blue intoNitella flexilis. J. gen. Physiol.14, 1 (1930–31).

    CAS  Google Scholar 

  153. —: Studies on penetration of dyes with glass electrode. V. Why does azure B penetrate more readily than methylene blue or crystal violet? J. gen. Physiol.14, 19 (1930–31).

    CAS  Google Scholar 

  154. —: On the nature of the dye penetratingNitella from cresyl blue. Proc. Soc. exper. Biol. a. Med.28, 329 (1930–31).

    Google Scholar 

  155. —: Can protein act as a carrier in penetration? Proc. Soc. exper. Biol. a. Med.29, 342 (1931–32).

    Google Scholar 

  156. —: Relation of absorption coefficients to rate of penetration of dye into the cell. Proc. Soc. exper. Biol. a. Med.29, 993 (1931–32).

    Google Scholar 

  157. —: Cell models representing various types of living cells. Proc. Soc. exper. Biol. a. Med.29, 995 (1931–32).

    Google Scholar 

  158. —: Effect of potassium chloride on rate of penetration of dyes. Proc. Soc. exper. Biol. a. Med.29, 1234 (1931–32).

    Google Scholar 

  159. —: Importance of internal phase boundary in penetration of dye into the vacuole. Proc. Soc. exper. Biol. a. Med.29, 1234 (1931–32).

    Google Scholar 

  160. —: Can a dye base penetrate into living cells from a relatively strongly basic dye solution?. Proc. Soc. exper Biol. a. Med.30, 1317 (1932–33).

    Google Scholar 

  161. Jacobs, M. H.: The influence of ammonium salts on cell reaction. J. gen. Physiol.5, 181 (1922–23).

    Article  CAS  Google Scholar 

  162. Jacobs, M. H.: Permeability of the cell to diffusing substances, p. 97. InCowdry, E. V.: General Cytology. Chicago 1924.

  163. —: The simultaneous measurement of cell permeability to water and to dissolved substances. J. Cell. comp. Physiol.2, 427 (1932–33).

    Google Scholar 

  164. —: The relation between cell volume and penetration of a solute from an isosmotic solution. J. Cell. comp. Physiol.3, 29 (1933).

    CAS  Google Scholar 

  165. —: Volume changes of cells in solutions containing both penetrating and non-penetrating solutes, and their relation to the “permeability ratio”. J. Cell. comp. Physiol.3, 121 (1933).

    CAS  Google Scholar 

  166. —: A method for determining the permeability ratio for water and a solute. Proc. Soc. exper. Biol. a. Med.30, 998 (1932–33).

    Google Scholar 

  167. — andD. R. Stewart: A simple method for the quantitative measurement of cell permeability. J. Cell. comp. Physiol.1, 71 (1932).

    Article  CAS  Google Scholar 

  168. Jacques, A. G. andW. J. V. Osterhout: Internal versus external toxicity inValonia. J. gen. Physiol.12, 209 (1928–29).

    Article  CAS  Google Scholar 

  169. ——: The kinetics of penetration. II. The penetration of CO2 intoValonia. J. gen Physiol.13, 695 (1929–30).

    Google Scholar 

  170. ——: The accumulation of electrolytes. III. Behavior of sodium, potassium and ammonium inValonia. J. gen. Physiol.14, 301 (1930–31).

    Article  CAS  Google Scholar 

  171. ——: The accumulation of electrolytes. IV. Internal versus external concentrations of potassium. J. gen. Physiol.15, 537 (1931–32).

    Google Scholar 

  172. Jost, L.: Lectures on plant physiology. Oxford. Clarendon Press. 1907.

  173. —: Einige physikalische Eigenschaften des Protoplasmas vonValonia undChara. Protoplasma (Berl.)7, 1 (1929).

    Article  Google Scholar 

  174. Küster, E.: Über die Verschmelzung nackter Protoplasten. Ber. dtsch. bot. Ges.27, 589 (1909).

    Google Scholar 

  175. —: Über Veränderungen der Plasmaoberfläche bei Plasmolyse. Z. Bot.2, 689 (1910).

    Google Scholar 

  176. —: Eine Methode zur Gewinnung abnorm grosser Protoplasten. Arch. Entw.mechan. (Festschrift fürWilhelm Roux)30, 1 351, (1910).

    Google Scholar 

  177. —: Über Protoplasmatentakeln und Vacuolenzerklüftung. Ber. dtsch. bot. Ges.50, 123 (1932).

    Google Scholar 

  178. Kümmel, K.: Elektrische Potentialdifferenzen and Pflanzen. Planta (Berl.)9, 564 (1929).

    Google Scholar 

  179. Lark-Horovitz, K.: A permeability test with radioactive indicators. Nature (Lond.)123, 277 (1929).

    CAS  Google Scholar 

  180. Lauterbach, L.: Untersuchungen über die Beeinflussung der Protoplasmaströmung der Characeen durch mechanische und osmotische Eingriffe. Beih. bot. Zbl.38, 1 (1921).

    Google Scholar 

  181. Lewis, G. N. andM. Randall: Thermodynamics and the free energy of chemical substances. New York: McGraw-Hill Book Co. Inc. 1923.

    Google Scholar 

  182. Lillie, R. S.: Increase of permeability to water following normal and artificial activation in sea-urchin eggs. Amer. J. Physiol.40, 249 (1916).

    CAS  Google Scholar 

  183. —: The physiology of cell-division. VI. Rhythmical changes in the resistance of the dividing sea-urchin egg to hypotonic sea water and their physiological significance. J. of exper. Zool.21, 369 (1916).

    Article  Google Scholar 

  184. —: The increase of permeability to water in fertilized sea-urchin eggs and the influence of cyanide and anaesthetics upon this change. Amer. J. Physiol.45, 406 (1918).

    CAS  Google Scholar 

  185. Lillie, R. S.: Protoplasmic action and nervous action. Chicago 1932.

  186. Linsbauer, K.: Untersuchungen über Plasma und Plasmaströmung anChara-Zellen. I. Beobachtungen an mechanisch und operativ beeinflussten Zellen. Protoplasma (Berl.)5, 563 (1928–29).

    Article  Google Scholar 

  187. —: Untersuchung über Plasma und Plasmaströmung anChara-Zellen. V. Untersuchungen des Protoplasmas mittels der Ausflussmethode. Protoplasma (Berl.)18, 554 (1933).

    Article  Google Scholar 

  188. Loeb, J.: The dynamics of living matter. New York: The Macmillan Co. 1906.

    Google Scholar 

  189. — andR. Beutner: Über die Potentialdifferenzen an der unversehrten und verletzten Oberfläche pflanzlicher und tierischer Organe. Biochem. Z.41, 1 (1912).

    Google Scholar 

  190. ——: Die Ursachen des Verletzungsstromes. Biochem. Z.44, 303 (1912).

    Google Scholar 

  191. ——: Einfluss der Anaesthetica auf die Potentialdifferenz an der Oberfläche pflanzlicher und tierischer Gewebe. Biochem. Z.51, 300 (1913).

    Google Scholar 

  192. Longsworth, L. G.: The theory of diffusion in cell models. J. gen. Physiol.17, 211 (1933–34).

    Article  CAS  Google Scholar 

  193. Lucké, B. andM. McCutcheon: The living cell as an osmotic system and its permeability to water. Physiologic. Rev.12, 68 (1932).

    Google Scholar 

  194. H. K. Hartline andM. McCutcheon: Further studies on the kinetics of osmosis in living cells. J. gen. Physiol.14, 405 (1930–31).

    Google Scholar 

  195. Lundegårdh, H.: Die Nährstoffaufnahme der Pflanze. Jena: Gustav Fischer 1932.

    Google Scholar 

  196. — u.H. Burström: Untersuchungen über die Salzaufnahme der Pflanzen. III. Biochem. Z.261, 235 (1933).

    Google Scholar 

  197. ——: Atmung und Ionenaufnahme. Planta (Berl.)18, 683 (1933).

    Google Scholar 

  198. Macallum, A. B.: Ionic mobility as a factor in influencing the distribution of potassium in living matter. Proc. roy. Soc. B104, 440 (1929).

    Google Scholar 

  199. McCutcheon, M. andB. Lucké: The mechanism of vital staining with basic dyes. J. gen. Physiol.6, 501 (1923–24).

    Google Scholar 

  200. ——: The kinetics of osmotic swelling in living cells. J. gen. Physiol.9, 697 (1925–26).

    Google Scholar 

  201. ——: The effect of certain electrolytes and non-electrolytes on permeability of living cells to water. J. gen. Physiol.12, 129 (1928–29).

    Article  CAS  Google Scholar 

  202. MacDougal, D. T.: Substances regulating the passage of material into and out of plant cells. The lipoids. Proc. amer. phil. Soc.67, 33 (1928).

    CAS  Google Scholar 

  203. — andV. Moravek: The activities of a constructed colloidal cell. Protoplasma (Berl.)2, 161 (1927).

    Article  CAS  Google Scholar 

  204. MacInnes, D. A.: The meaning and calibration of the pH scale. Cold Spring Harbor Symposia on Quantitative Biology, Vol. 1, In press 1933.

  205. Magistris, H. u.P. Schäfer: Zur Biochemie und Physiologie organischer Phosphorverbindungen in Pflanze und Tier. II. Biochem. Z.214, 440 (1929).

    CAS  Google Scholar 

  206. Matsuo, T.: Neue Versuche zur Theorie der bioelektrischen Ströme. Arch. ges. Physiol.200, 132 (1923).

    Article  Google Scholar 

  207. Meyer, A.: Notiz über die Zusammensetzung des Zellsaftes vonValonia utricularis. Ber. dtsch. bot. Ges.9, 77 (1891).

    Google Scholar 

  208. Michaelis, L.: Contribution to the theory of permeability of membranes for electrolytes. J. gen. Physiol.8, 33 (1925–28).

    Article  CAS  Google Scholar 

  209. Michaelis, L.: Molecular sieve membranes. In Molecular physics in relation to biology. Bull. nat. Res. Council1929, Nr 69, 119.

  210. — u.S. Dokan: Untersuchungen über elektrische Erscheinungen und Ionendurchlässigkeit von Membranen. VI. Membranen aus Paraffin, Wachs, Mastix, Kautschuk. Biochem. Z.162, 258 (1925).

    CAS  Google Scholar 

  211. R. McL. Ellsworth andA. A. Weech: Studies on the permeability of membranes. II. Determination of ionic transfer numbers in membranes from concentration chains. J. gen. Physiol.10, 671 (1926–27).

    Google Scholar 

  212. — u.A. Fujita: Untersuchungen über elektrische Erscheinungen und Ionendurchlässigkeit von Membranen. II. Die Permeabilität der Apfelschale. Biochem. Z.158, 28 (1925).

    CAS  Google Scholar 

  213. ——: Untersuchungen über elektrische Erscheinungen und Ionendruchlässigkeit von Membranen. IV. Potentialdifferenzen und Permeabilität von Kollodiummembranen. Biochem. Z.161, 47 (1925).

    CAS  Google Scholar 

  214. ——: Untersuchungen über elektrische Erscheinungen und Ionendurchlässigkeit von Membranen. VII. Die Permeabilität der Kollodiummembrane für mehrwertige Kationen. Biochem. Z.164, 23 (1925).

    CAS  Google Scholar 

  215. — u.K. Hayaschi: Untersuchungen über elektrische Erscheinungen und Ionendurchlässigkeit von Membranen. IX. Fortgesetzte Untersuchungen über die ausgetrocknete Kollodiummembran. Biochem. Z.173, 411 (1926).

    CAS  Google Scholar 

  216. — andA. W. Perlzweig: Studies on permeability of membranes. I. Introduction and the diffusion of ions across the dried collodion membrane. J. gen. Physiol.10, 575 (1926–27).

    Google Scholar 

  217. — andA. A. Weech: Studies on the permeability of membranes. IV. Variations of transfer numbers with the dried collodion membrane produced by the electric current. J. gen. Physiol.11, 147 (1927–28).

    Article  Google Scholar 

  218. —— andA. Yamatori: Studies on the permeability of membranes. III. Electric transfer experiments with the dried collodion membrane. J. gen. Physiol.10, 685 (1926–27).

    Google Scholar 

  219. Migula, W.: Die Chareceen. InRabenhorsts Kryptogamenflora, 2. Aufl. Bd. 5. Leipzig 1897.

  220. Mond, R.: Umkehr der Anionenpermeabilität der roten Blutkörperchen in eine, elektive Durchlässigkeit für Kationen. Ein Beitrag zur Analyse der Zellmembranen. Arch. ges. Physiol.217, 618 (1927).

    CAS  Google Scholar 

  221. —: Weitere vergleichende Untersuchungen über Membranstruktur und Permeabilität der roten Blutkörperchen. Bemerkungen zur Frage der Traubenzuckerpermeabilität. Arch. ges. Physiol.224, 161 (1930).

    CAS  Google Scholar 

  222. — u.H. Gertz: Vergleichende Untersuchungen über Membranstruktur und Permeabilität der roten Blutkörperchen verschiedener Säugetiere. Arch. ges. Physiol.221, 623 (1928–29).

    Google Scholar 

  223. — andF. Hoffmann: Weitere Untersuchungen über die Membranstruktur der roten Blutkörperchen. Die Beziehungen zwischen Durchlässigkeit und Molekularvolumen. Arch. ges. Physiol.219, 467 (1928).

    Article  CAS  Google Scholar 

  224. ——: Untersuchungen an künstlichen Membranen die elektiv anionenpermeabel sind. Arch. ges. Physiol.220, 194 (1928).

    Google Scholar 

  225. ——: Untersuchungen über die Permeabilität der Knorpelzellen. Arch. ges. Physiol.221, 460 (1928–29).

    Google Scholar 

  226. — u.H. Netter: Ändert sich die Ionenpermeabilität des Muskels während seiner Tätigkeit? Arch. ges. Physiol.224, 702 (1930).

    Google Scholar 

  227. Mudd, S. andE. B. H. Mudd: The deformability and the wetting properties of leucocytes and ertthrocytes. J. gen. Physiol.14, 733 (1930–31).

    Google Scholar 

  228. Nathansohn, A.: Über die Regulation der Aunahme anorgaischer Salze durch die Knollen von Dahlia. Jb. Bot.39, 607 (1904).

    Google Scholar 

  229. —: Weitere Mitteilungen über die Regulation der Stoffaufnahme. Jb. Bot.40, 403 (1904).

    Google Scholar 

  230. Netter, H.: Über die Elektrolytgleichgewichte an elektiv ionenpermeabelen Membranen und ihre biologische Bedeutung. Arch. ges. Physiol.220, 107 (1928).

    Article  CAS  Google Scholar 

  231. —: Gehorcht die Ammoniakverteilung auf Blutkörperchen und Serum den Membrangleichgewichten? Arch. ges. Physiol.222, 724 (1929).

    Article  CAS  Google Scholar 

  232. —: Über die Durchlässigkeit von Drüsen, ein weiteres Beispiel selektiver Ionenpermeabilität. Arch. ges. Physiol.224, 121 (1930).

    Article  CAS  Google Scholar 

  233. Nichols, S. P.: Methods of healing in some algal cells. Amer. J. Bot.9, 18 (1922).

    Google Scholar 

  234. Northrop, J. H.: The permeability of thin dry collodion membranes. J. gen. Physiol.11, 233 (1927–28).

    Article  Google Scholar 

  235. —: The permeability of dry collodion membranes. II. J. gen. Physiol.12, 435 (1928–29).

    Article  Google Scholar 

  236. —: Unequal distribution of ions in a collodion cell. J. gen. Physiol.13, 21 (1929–30).

    Article  CAS  Google Scholar 

  237. Oltmanns, F.: Morphologie und Biologie der Algen, 2. Aufl. Jena 1922.

  238. Osterhout, W. J. V.: The organization of the cell with respect to permeability. Science (N. Y.)38, 408 (1913).

    Google Scholar 

  239. —: The nature of mechanical stimulation. Proc. nat. Acad. Sci. U.S.A.2, 237 (1916).

    CAS  Google Scholar 

  240. —: Direct and indirect determinations of permeability. J. gen. Physiol.4, 275 (1921–22).

    Article  Google Scholar 

  241. —: Injury, recovery, and death, in relation to conductivity and permeability. Monographs on Experimental Biology. Philadelphia: J. B. Lippincott Co. 1922.

    Google Scholar 

  242. —: Some aspects of selective absorption. J. gen. Physiol.5, 225 (1922–23).

    Article  CAS  Google Scholar 

  243. —: Exosmosis in relation to injury and permeability. J. gen. Physiol.5, 709 (1922–23).

    Article  Google Scholar 

  244. —: On the importance of maintaining certain differences between cell sap and external medium. J. gen. Physiol.7, 561 (1924–25).

    Google Scholar 

  245. —: Is living protoplasm permeable to ions? J. gen. Physiol.8, 131 (1925–28).

    Article  CAS  Google Scholar 

  246. —: The behavior of electrolytes inValonia. Proc. Soc. exper. Biol. a. Med.24, 234 (1926–27).

    Google Scholar 

  247. —: Some aspects of bioelectrical phenomena. J. gen. Physiol.11, 83 (1927–28).

    CAS  Google Scholar 

  248. —: Some aspects of cellular physiology. In Lectures on plant pathology and physiology in relation to man. Mayo Foundation Lectures 1926–27. p. 179. Philadelphia and London: W. B. Saunders Company 1928.

    Google Scholar 

  249. Osterhout, W. J. V.: Some aspects of permeability and bioelectrical phenomena. In Molecular physics in relation to biology. Bull. nat. Res. Council1929, Nr 69, 170.

  250. —: The kinetics of penetration. I. Equations for the entrance of electrolytes. J. gen. Physiol.13, 261 (1929–30).

    CAS  Google Scholar 

  251. —: Calculations of bioelectric potentials. I. Effects of KCl and NaCl onNitella. J. gen. Physiol.13, 715 (1929–30).

    Google Scholar 

  252. —: The kinetics of penetration. III. Equations for the exchange of ions. J. gen. Physiol.14, 277 (1930–31).

    CAS  Google Scholar 

  253. —: Electrical phenomena in the living cell. In Harvey Lectures 1929–30, p. 169. Baltimore: Williams and Wilkins Co. 1931.

    Google Scholar 

  254. —: The accumulation of electrolytes. II. Suggestions as to the nature of accumulation inValonia. J. gen. Physiol.14, 285 (1930–31).

    CAS  Google Scholar 

  255. —: Physiological studies of single plant cells. Biol. Rev. Cambridge philos. Soc.6, 369 (1931).

    Google Scholar 

  256. —: The kinetics of penetration. IV. Diffusion against a growing potential gradient in models. J. gen. Physiol.16, 157 (1932–33).

    Article  CAS  Google Scholar 

  257. —: The kinetics of penetration. V. The kinetics of a model as related to the steady state. J. gen. Physiol.16, 529 (1932–33).

    Article  Google Scholar 

  258. Osterhout, W. J. V.: The electrical behavior, of large plant cells. In Cold spring Harbor Symposia on Quantitative Biology, Vol. 1. In press 1933.

  259. Osterhout, W. J. V.: Osmotic pressure in large plant cells and in models. In Cold Spring Harbor Symposia on Quantitative Biology, Vol. 1. In press 1933.

  260. —,E. B. Damon andA. G. Jacques: Dissimilarity of inner and outer protoplasmic surface inValonia. J. gen. Physiol.11, 193 (1927–28).

    CAS  Google Scholar 

  261. — andM. J. Dorcas: Contrasts in the cell sap ofValonia and the problem of flotation. J. gen. Physiol.7, 633 (1924–25).

    Google Scholar 

  262. ——: The penetration of CO2 into living protoplasm. J. gen. Physiol.9, 255 (1925–26).

    Article  CAS  Google Scholar 

  263. — andE. S. Harris: Protoplasmic asymmetry inNitella as shown by bioelectric measurements. J. gen. Physiol.11, 391 (1927–28).

    Google Scholar 

  264. ——: Positive and negative currents of injury in relation to protoplasmic structure. J. gen. Physiol.11, 673 (1927–28).

    Google Scholar 

  265. ——: The death wave inNitella. I. Applications of like solutions. J. gen. Physiol.12, 167 (1928–29).

    Article  CAS  Google Scholar 

  266. ——: The death wave inNitella. II. Applications of unlike solutions. J. gen. Physiol.12, 355 (1928–29).

    Article  Google Scholar 

  267. ——: Bioelectrical aspects of the all or none law. Proc. Soc. exper. Biol. a. Med.26, 383 (1928–29).

    Google Scholar 

  268. ——: The concentration effect inNitella. J. gen. Physiol.12, 761 (1928–29).

    Article  Google Scholar 

  269. ——: Note on the nature of the current of injury in tissues. J. gen. Physiol.13, 47 (1929–30).

    CAS  Google Scholar 

  270. — andS. E. Hill: Negative variations inNitella produced by chloroform and by potassium chloride. J. gen. Physiol.13, 459 (1929–30).

    Google Scholar 

  271. ——: Salt bridges and negative variations. J. gen. Physiol.13, 547 (1929–30).

    Google Scholar 

  272. ——: The death wave inNitella. III. Transmission. J. gen. Physiol.14, 385 (1930–31).

    Google Scholar 

  273. ——: Electrical variations due to mechanical transmission of stimuli. J. gen. Physiol.14, 473 (1930–31).

    Google Scholar 

  274. ——: The production and inhibition of action currents by alcohol. J. gen Physiol.14, 611 (1930–31).

    Google Scholar 

  275. ——: Anesthesia produced by distilled water. J. gen Physiol.17, 87 (1933–34).

    CAS  Google Scholar 

  276. ——: Anesthesia in acid and alkaline solutions. J. gen. Physiol.17, 99 (1933–34).

    CAS  Google Scholar 

  277. ——: Reversible loss of the potassium effect in distilled water. J. gen. Physiol.17, 105 (1933–34).

    CAS  Google Scholar 

  278. Osterhout, W. J. V. andS. E. Kamerling: The kinetics of penetration. VIII. Temporary accumulation. J. gen. Physiol.17. In press (1933–34).

  279. Osterhout, W. J. V., S. E. Kamerling andW. M. Stanley: The kinetics of penetration. VI. Some factors affecting penetration. J. gen. Physiol.17. In press (1933–34).

  280. — andW. M. Stanley: The accumulation of electrolytes. V. Models showing accumulation and a steady state. J. gen. Physiol.15, 667 (1931–32).

    Google Scholar 

  281. Osterhout, W. J. V., W. M. Stanley andS. E. Kamerling: Kinetics of penetration. VII. Molecular versus ionic transport: role of partition coefficients. J. gen. Physiol.17. In press (1933–34).

  282. Pantanelli, E.: Assorbimento eletivo di ioni nelle piante. Bull. Orto Bot. R. Univ. Napoli5, 1 (1918).

    CAS  Google Scholar 

  283. —: Decorse dell'assorbimento di ioni nelle piante. Bull. Orto. Bot. R. Univ. Napoli6, 1 (1921).

    CAS  Google Scholar 

  284. Pfeffer, W.: Pflanzenphysiologie, 2. Aufl. Leipzig: Wilhelm Englemann 1897.

    Google Scholar 

  285. Pràt, S.: The toxicity of tissue juices for cells of the tissue. Amer. J. Bot.14, 120 (1927).

    Google Scholar 

  286. Rideal, E. K.: An introduction to surface chemistry. Cambridge 1926.

  287. Robertson, T. B.: On the nature of the superficial layer in cells and its relation to their permeability and to the staining of tissues by dyes. J. of biol. Chem.4, 1 (1908).

    CAS  Google Scholar 

  288. Romijn, C.: Über den Einfluss der Temperatur auf die Protoplasmaströmung beiNitella flexilis. Proc. Akad. Wetensch. Amsterd.34, (1), 289 (1931).

    Google Scholar 

  289. Schönfelder, S.: Weitere Untersuchungen über die Permeabilität vonBeggiatoa mirabilis nebst kritischen Ausführungen zum Gesamtproblem der Permeabilität. Planta (Berl.)12, 414 (1930).

    Google Scholar 

  290. Sen, B.: A method of measuring the change of permeability to ions of single cells under electric stimulation. Ann. of Bot.45, 527 (1931).

    CAS  Google Scholar 

  291. Smith, G. M.: Observations on some siphonaceous green algae of the Monterey peninsula. In Contributions to Marine Biology. Stanford University Press, p. 222. 1920.

  292. Söllner, K.: Zur Aufklärung einiger Membranvorgänge (Becquerel-Phänomenen, negative Osmose, abnormes Permeiervermögen u. a.). Kolloid-Z.62, 31 (1933).

    Article  Google Scholar 

  293. Steward, F. C.: An experimental examination of the evidence for the presence of phosphatides in the limiting surface of the living protoplast. Brit. J. exper. Biol.6, 32 (1928–29).

    CAS  Google Scholar 

  294. —: On the evidence for phosphatides in the external surface of the plant protoplast. Biochemic. J.22 (1), 268 (1928).

    CAS  Google Scholar 

  295. —: The absorption and accumulation of solutes by living plant cells. V. Observations upon the effects of time, oxygen and salt concentration upon absorption and respiration by storage tissue. Protoplasma (Berl.)18, 208 (1933).

    Article  CAS  Google Scholar 

  296. Stiles, W.: Permeability. New Phytologist Reprint No. 13. London 1924.

  297. Straub, J.: Der Unterschied in osmotischer Konzentration zwischen Eigelb und Eiklar. Rec. Trav. chim. Pays-Bas et Belg. (Amsterd.)48, 49 (1929).

    Google Scholar 

  298. —: Stationaire toestanden aan doode membranen. Chem. Weekbl.27, 672 (1930).

    CAS  Google Scholar 

  299. —: Harmonische Konzentrationsunterschiede an einer Membran. Kolloid-Z.62, 13 (1933).

    Article  CAS  Google Scholar 

  300. —: Membrangleichgewichte und Harmonien. Kolloid-Z.64, 72 (1933).

    Article  CAS  Google Scholar 

  301. Strugger, S.: Untersuchungen über Plasma und Plasmaströmung bei Characeen. III Beobachtungen am ausgeflossenen Protoplasma durchschnittenerChara-Internodialzellen. Protoplasma (Berl.)7, 23 (1929).

    Article  Google Scholar 

  302. Sumwalt, M.: Potential differences across the chorion of theFundulus egg. Biol. Bull. Mar. biol. Labor. Wood's Hole56, 193 (1929).

    Google Scholar 

  303. Taylor, C. V. andD. M. Whitaker: A measurable potential difference between the cell intericr and outside medium. Carnegie Inst. Washington Year Book1925–26, Nr 25, 248.

  304. ——: Potentionetric determinations in the protoplasm and cell-sap inNitella. Protoplasma (Berl.)3, 1 (1927).

    Article  CAS  Google Scholar 

  305. Thoday, D. andH. Evans: Studies in growth and differentiation. III. The distribution of calcium and phosphate in the tissues of “Kleinia articulata” and some other plants. Ann. of Bot.46, 781 (1932).

    CAS  Google Scholar 

  306. Tschermak, A. v.: Allgemeine Physiologie. Berlin 1924.

  307. Ulich, H.: Ionic mobilities in non-aqueous solvents. Trans. Faraday Soc.23, 388 (1927).

    Article  CAS  Google Scholar 

  308. Umrath, K.: Untersuchungen über Plasma und Plasmaströmung an Characeen. IV. Potentialmessungen anNitella mucronata mit besonderer Berücksichtigung der Erregungserscheinungen. Protoplasma (Berl.)9, 576 (1930).

    Article  Google Scholar 

  309. —: Die Bildung von Plasmalemma (Plasmahaut) beiNitella mucronata. Protoplasma (Berl.)16, 173 (1932).

    Article  Google Scholar 

  310. —: Der Erregungsvorgang beiNitella mucronata. Protoplasma (Berl.)17, 258 (1932).

    Google Scholar 

  311. Vouk, V. andV. Benziger: Some preliminary experiments on the physiology of Charophyta. Acta bot. Inst. Univ. Zagrebensis4, 1 (1928).

    Google Scholar 

  312. Vries, H. de: Plasmolytische Studien über die Wand der Vakuolen. Jb. Bot.16, 465 (1885).

    Google Scholar 

  313. Walden, P.: Elektrochemie nichtwässriger Lösungen. Leipzig: Johann Ambrosius Barth 1924.

    Google Scholar 

  314. Weber, F.: Plasmolyse und “surface precipitation reaction”. Protoplasma (Berl.)15, 522 (1932).

    Google Scholar 

  315. Weech, A. A. andL. Michaelis: Studies on permeability of membranes. V. The diffusion of non-electrolytes through the dried collodion membrane. J. gen. Physiol.12, 55 (1928–29).

    CAS  Google Scholar 

  316. ——: Studies on permeability of membranes. VI. Mensuration of the dried collodion membrane (calculation of dimensions and of relations to certain biological membranes). J. gen. Physiol.12, 221 (1928–29).

    CAS  Google Scholar 

  317. ——: Studies on permeability of membranes. VIII. The behavior of the dried collodion membrane toward bivalent cations. J. gen. Physiol.12, 487 (1928–29).

    Google Scholar 

  318. Wildervanck, L. S.: Osmotic adaptation ofNitella translucens Agardh. Rec. Trav. bot. néerl.29, 227 (1932).

    Google Scholar 

  319. Wodehouse, R. P.: Direct determination of permeability. J. of biol. Chem.29, 453 (1917).

    CAS  Google Scholar 

  320. Wosnessensky, S.: Über die thermodynamischen Potentialunterschiede an der Grenze zweier flüssigen Phasen. I. Z. physik. Chem.115, 405 (1925).

    CAS  Google Scholar 

  321. — u.K. Astachow: Über die thermodynamischen Potentialunterschiede an der Grenze zweier flüssigen Phasen. V. Z. physik. Chem.128, 362 (1927).

    Google Scholar 

  322. Zscheile, F. P. Jr.: The thermodynamics of ion concentration by living plant cells. Protoplasma (Berl.)11, 481 (1930).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 3 figures.

From the Laboratories of the Rockefeller Institute for Medical Research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osterhout, W.J.V. Permeability in large plant cells and in models. Ergebnisse der Physiologie und exper. Pharmakologie 35, 967–1021 (1933). https://doi.org/10.1007/BF02331372

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02331372

Keywords

Navigation