Skip to main content

Chemolithoheterotrophy: Means to Higher Growth Yields from This Widespread Metabolic Trait

  • Living reference work entry
  • First Online:
Aerobic Utilization of Hydrocarbons, Oils and Lipids

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

Abstract

Chemolithoheterotrophy is a mixed metabolic mode in which heterotrophic growth is augmented by energy conserved from the oxidation of an inorganic electron donor such as thiosulfate or sulfide (or from sulfide moieties in methylated sulfur species). This results in an increased specific molar growth yield and a more efficient uptake of carbon from the carbon source, which can lead to more efficient biomass or product formation or more efficient degradation of pollutants etc. In this chapter we discuss the potential for harnessing this metabolic trait in biotechnology with critical evaluation of studies thus far.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Albuquerque L, Santos J, Travassos P, Nobre MN, Rainey FA, Wait R, Empadinhas N, Silva MT, da Costa MS (2002) Albidovulum inexpectatum gen. nov., sp. nov., a nonphotosynthetic and slightly thermophilic bacterium from a marine hot spring that is very closely related to members of the photosynthetic genus Rhodovulum. Appl Environ Microbiol 68:4266–4273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey JE, Ollis DF (1986) Biochemical engineering fundamentals. McGraw-Hill, New York

    Google Scholar 

  • Berresheim H, Huey JW, Thorn RP, Eisele FL, Tanner DJ, Jefferson A (1998) Measurements of dimethyl sulfide, dimethyl sulfoxide, dimethyl sulfone, and aerosol ions at Palmer Station, Antarctica. J Geophys Res 103:1629–1637

    Article  CAS  Google Scholar 

  • Boden R, Kelly DP, Murrell JC, Schäfer H (2010) Oxidation of dimethylsulfide to tetrathionate by Methylophaga thiooxidans sp. nov.: a new link in the sulfur cycle. Environ Microbiol 12: 2688–2699

    CAS  PubMed  Google Scholar 

  • Boden R, Murrell JC, Schäfer H (2011) Dimethylsulfide is an energy source for the heterotrophic marine bacterium Sagittula stellata. FEMS Microbiol Lett 322:188–193

    Article  CAS  PubMed  Google Scholar 

  • Boden R, Hutt LP, Rae AW (2017) Reclassification of Thiobacillus aquaesulis (Wood & Kelly, 1995) as Annwoodia aquaesulis gen. nov., comb. nov., transfer of Thiobacillus (Beijerinck, 1904) from the Hydrogenophilales to the Nitrosomonadales, proposal of Hydrogenophilalia class. nov. within the ‘Proteobacteria’, and four new families within the orders Nitrosomonadales and Rhodocyclales. Int J Syst Evol Microbiol 67:1191–1205

    Article  PubMed  Google Scholar 

  • Borodina E, Kelly DP, Rainey FA, Ward-Rainey NL, Wood AP (2000) Dimethylsulfone as a growth substrate for novel methylotrophic species of Hyphomicrobium and Arthrobacter. Arch Microbiol 173:425–237

    Article  CAS  PubMed  Google Scholar 

  • Das SK, Mishra AK (1996) Transposon mutagenesis affecting thiosulfate oxidation in Bosea thiooxidans, a new chemolithoheterotrophic bacterium. J Bacteriol 178:3628–3633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Zwart JMM, Nelisse PN, Kuenen JG (1996) Isolation and characterization of Methylophaga sulfidovorans sp. nov.: an obligately methylotrophic, aerobic, dimethylsulfide oxidizing bacterium from a microbial mat. FEMS Microbiol Ecol 20:261–270

    Article  Google Scholar 

  • Dick GJ, Podell S, Johnson HA, Rivera-Espinoza Y, Bernier-Latmani R, McCarthy JK, Torpey JW, Clement BG, Gaasterland T, Tebo BM (2008) Genomic insights into Mn(II) oxidation by the marine Alphaproteobacterium Aurantimonas sp. Strain SI85-9A1. Appl Environ Microbiol 74:2646–2658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frolova EN, Belousovaa EV, Lavrinenkoa KS, Dubinina GA, Grabovich MY (2013) Capacity of Azospirillum thiophilum for lithotrophic growth coupled to oxidation of reduced sulfur compounds. Microbiology (Russia) 82:271–279

    Google Scholar 

  • Gaokar UG, Eshwar MC (1982) Rapid spectrophotometric determination of manganese (II) with 4-(2-thiazolylazo)-resorcinol. Microchim Acta 78:247–252

    Article  Google Scholar 

  • Gil-Hwan A, Choi E-S (2003) Preparation of the red yeast Xanthophyllomyces dendrorhous, as a feed additive with increased availability of astaxanthin. Biotechnol Lett 25:767–771

    Article  Google Scholar 

  • Giovannelli D, Grosche A, Starovoytov V, Yakimov M, Manini E, Vetriani C (2012) Galenea microaerophila gen. nov., sp. nov., a mesophilic, microaerophilic, chemosynthetic, thiosulfate-oxidizing bacterium isolated from a shallow-water hydrothermal vent. Int J Syst Evol Microbiol 62:3060–3066

    Article  PubMed  Google Scholar 

  • Gommers PJF, Kuenen JG (1988) Thiobacillus strain Q, a chemolithoheterotrophic sulphur bacterium. Arch Microbiol 150:117–125

    Article  CAS  Google Scholar 

  • Grabovich MYU, Dul’tseva NM, Dubinina GA (2002) Carbon and sulfur metabolism in representatives of two clusters of bacteria of the genus Leucothrix: a comparative study. Microbiology (Russia) 71:255–261

    CAS  Google Scholar 

  • Grabovich MY, Muntyan MS, Lebedeva VY, Ustiyan VS, Dubinina GA (1999) Lithoheterotrophic growth and electron transfer chain components of the filamentous gliding bacterium Leucothrix mucor DSM 2157 during oxidation of sulfur compounds. FEMS Microbiol Lett 178:155–161

    Article  CAS  Google Scholar 

  • Horvath AS, Garrick LV, Moreau JW (2014) Manganese-reducing Pseudomonas fluorescens-group bacteria control arsenic mobility in gold mining-contaminated groundwater. Env Earth Sci 71:4187–4198

    Article  CAS  Google Scholar 

  • Hutt LP (2016) Taxonomy, physiology and biochemistry of the sulfur Bacteria. Ph.D Thesis, University of Plymouth

    Google Scholar 

  • Kanagawa T, Kelly DP (1986) Breakdown of dimethyl sulfide by mixed cultures and by Thiobacillus thioparus. FEMS Microbiol Lett 34:13–19

    Article  CAS  Google Scholar 

  • Kelly DP (1978) Bioenergetics of chemolithotrophic bacteria. In: Bull AT, Meadow PM (eds) Companion to microbiology. Longman, London, pp 363–386

    Google Scholar 

  • Kelly DP (1990) Energetics of chemolithotrophs. In: Krulwich TA (ed) The Bacteria: a treatise on structure and function volume XII: bacterial energetics. Academic, London

    Google Scholar 

  • Kelly DP, Kuenen JG (1984) Ecology of the colourless sulphur bacteria. In: Codd GA (ed) Aspects of microbial metabolism and ecology. Academic, Orlando, pp 210–240

    Google Scholar 

  • Kelly DP, Wood AP (1994) Synthesis and determination of polythionates and thiosulfate. Methods Enzymol 243:475–501

    Article  CAS  Google Scholar 

  • Kompantseva EI, Kublanov IV, Perevalova AA, Chernyh NA, Toshchakov SV, Litti YV, Antipov AN, Bonch-Osmolovskaya EA, Miroshnichenko ML (2017) Calorithrix insularis gen. nov., sp. nov., a novel representative of the phylum Calditrichaeota. Int J Syst Evol Microbiol 67:1486–1490

    Article  PubMed  Google Scholar 

  • Krumbein W, Altmann H (1973) A new method for the detection and enumeration of manganese oxidizing and reducing microorganisms. Helgol Mar Res 25:347–356

    CAS  Google Scholar 

  • Mandalasi M (2002) pH stability of higher polythionates: S9O62–, S12O62–, S15O62–, S18O62–, S21O62–, S24O62–. MS Thesis, Indiana University of Pennsylvania

    Google Scholar 

  • Mason J (1986) Microbial growth and the oxidation of inorganic sulphur compounds. PhD Thesis. University of Warwick, United Kingdom

    Google Scholar 

  • Mason J, Kelly DP (1988) Thiosulfate oxidation by obligately heterotrophic bacteria. Microb Ecol 15:123–134

    Article  CAS  PubMed  Google Scholar 

  • Menger FM, Elrington AR (1990) Rapid deactivation of mustard via microemulsion technology. J Am Chem Soc 112:8201–8203

    Article  CAS  Google Scholar 

  • Miroshnichenko ML, L’Haridon S, Jeanthon C, Antipov AN, Kostrikina NA, Tindall BJ, Schumann P, Spring S, Stackebrandt E, Bonch-Osmolovskaya EA (2003a) Oceanithermus profundus gen. nov, sp. nov., a thermophilic, microaerophilic, facultatively chemolithoheterotrophic bacterium from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 53:747–752

    Article  CAS  PubMed  Google Scholar 

  • Miroshnichenko ML, L’Haridon S, Nercessian O, Antipov AN, Kostrinkina NA, Tindall BJ, Schumann P, Spring S, Stackebrandt E, Bonch-Osmolovskaya EA, Jeanthon C (2003b) Vulcanithermus mediatlanticus gen. nov, sp. nov., a novel member of the family Thermaceae from a deep-sea hot vent. Int J Syst Evol Microbiol 53:1143–1148

    Article  CAS  PubMed  Google Scholar 

  • Miroshnichenko ML, Kostrikina NA, Chernyh NA, Pimenov NV, Tourova TP, Antipov AN, Spring S, Stackebrandt E, Bonch-Osmolovskaya EA (2003c) Caldithrix abyssi gen. nov., sp. nov., a nitrate-reducing, thermophilic, anaerobic bacterium isolated from a Mid-Atlantic Ridge hydrothermal vent, represents a novel bacterial lineage. Int J Syst Evol Microbiol 53:323–329

    Article  CAS  PubMed  Google Scholar 

  • Moreira C, Rainey FA, Nobre MF, da Silva MT, da Costa MS (2000) Tepidimonas ignava gen. nov., sp. nov., a new chemolithoheterotrophic thermophilic member of the β-Proteobacteria. Int J Syst Evol Microbiol 50:735–742

    Article  CAS  PubMed  Google Scholar 

  • Mori K, Maruyama A, Urabe T, Suzuki K-I, Hanada S (2008) Archaeoglobus infectus sp. nov., a novel thermophilic, chemolithoheterotrophic archaeon isolated from a deep-sea rock collected at Suiyo Seamount, Izu-Bonin Arc, western Pacific Ocean. Int J Syst Evol Microbiol 58:810–816

    Article  CAS  PubMed  Google Scholar 

  • Murthy ARV (1953) Estimation of dithionate. Curr Sci 22:371

    CAS  Google Scholar 

  • Palmer WG (1954) Experimental inorganic chemistry. Cambridge University Press, Cambridge

    Google Scholar 

  • Parshina SN, Sipma J, Nakashimada Y, Meint Henstra A, Smidt H, Lysenko AM, Lens PNL, Lettinga G, Stams AJM (2005) Desulfotomaculum carboxydivorans sp. nov., a novel sulfate-reducing bacterium capable of growth at 100% CO. Int J Syst Evol Microbiol 55:2159–2165

    Article  CAS  PubMed  Google Scholar 

  • Pfansteil R (1946) 50. Salts of dithionic acid. Inorg Synth 2:167–172

    Google Scholar 

  • Pikuta E, Lysenko A, Suzina N, Osipov G, Kuznetsov B, Tourova T, Akimenko V, Laurinavichius K (2000) Desulfotomaculum alkaliphilum sp. nov., a new alkaliphilic, moderately thermophilic, sulfate-reducing bacterium. Int J Syst Evol Microbiol 50:25–33

    Article  CAS  PubMed  Google Scholar 

  • Pollard FH, Jones DJ (1958) The inter-relations of the sulphur oxy-acids. Symp Chem Soc 12:363–390

    Google Scholar 

  • Roy AB, Trudinger PA (1970) The biochemistry of inorganic compounds of sulphur. Cambridge University Press, Cambridge

    Google Scholar 

  • Sar P, D’Souza SF (2002) Biosorption of thorium (IV) by a Pseudomonas biomass. Biotechnol Lett 24:239–243

    Article  CAS  Google Scholar 

  • Skidmore DW (1979) Purification of carbon disulphide for use as a solvent in gas chromatography. Ann Occup Hyg 22:181–182

    CAS  PubMed  Google Scholar 

  • Smith NA (1988) Metabolism of dimethyl disulphide, carbon disulphide and other volatile sulphur compounds by chemolithoautotrophic sulphur bacteria. Ph.D Thesis, University of Warwick

    Google Scholar 

  • Sorokin DY (1992) Catenococcus thiocyclus gen. nov., sp. nov. – a new facultatively anaerobic bacterium from a near-shore sulphidic hydrothermal area. J Gen Microbiol 138:2287–2292

    Article  Google Scholar 

  • Sorokin DY, Teske A, Robertson LA, Kuenen JG (1999) Anaerobic oxidation of thiosulfate to tetrathionate by obligately heterotrophic bacteria belonging to the Pseudomonas stutzeri group. FEMS Microbiol Ecol 30:113–123

    Article  CAS  PubMed  Google Scholar 

  • Sorokin DY, Tourova TP, Muyzer G (2005) Citreicella thiooxidans gen. nov., sp. nov., a novel lithoheterotrophic sulfur-oxidizing bacterium from the Black Sea. Syst Appl Microbiol 28:679–687

    Article  CAS  PubMed  Google Scholar 

  • Spring S, Kämpfer P, Schleifer KH (2003) Limnobacter thiooxidans gen. nov., sp. nov., a novel thiosulfate-oxidizing bacterium isolated from freshwater lake sediment. Int J Syst Evol Microbiol 51:1463–1470

    Article  Google Scholar 

  • Spring S, Jäckel U, Wagner M, Kämpfer P (2004) Ottowia thiooxydans gen. nov, sp. nov., a novel facultatively anaerobic, N2O-producing bacterium isolated from activated sludge, and transfer of Aquaspirillum gracile to Hylemonella gracilis gen. nov., comb. nov. Int J Syst Evol Microbiol 54:99–106

    Article  CAS  PubMed  Google Scholar 

  • Stamm H, Seipold O, Goehring M (1941) Zur Kenntnis der Polythionsäuren und ihrer Bildung. 4. Mitteilung. Die Reaktionen zwischen Polythionsäuren und schwefliger Säuare bzw. Thioschwefelsäure. Z Anorg Allgem Chemie 247:277–306

    Article  CAS  Google Scholar 

  • Suylen GMH, Stefess GC, Kuenen JG (1986) Chemolithotrophic potential of a Hyphomicrobium species, capable of growth on methylated sulphur compounds. Arch Microbiol 146:192–198

    Article  CAS  Google Scholar 

  • Terry LR, Kulp TR, Wiatrowski H, Miller LG, Oremland RS (2015) Microbial oxidation of antimony(III) with oxygen or nitrate by bacteria isolated from contaminated mine sediments. Appl Environ Microbiol 81:8478–8488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trautwein K (1921) Beitrag zur Physiologie und Morphologie der Thionsäurebakterien (Omeliansky). Inaugural-dissertation, Bayerischen Julius-Maximilians-Universität Würzburg. Gustav Fischer, Jena

    Google Scholar 

  • Trudinger P (1961) Thiosulphate oxidation and cytochromes in Thiobacillus X. 2. Thiosulphate-oxidizing enzyme. Biochem J 78:680–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wainwright M, Grayston SJ (1988) Fungal growth and stimulation by thiosulphate under oligocarbotrophic conditions. Trans Br Mycol Soc 91:149–156

    Article  CAS  Google Scholar 

  • Walden GH, Hamett LP, Edmonds SM (1934) Phenanthroline-ferrous ion. III. A silver redactor. The direct determination of iron in the presence of vanadium. J Am Chem Soc 56:350–353

    Article  CAS  Google Scholar 

  • Weatherburn MW (1967) Phenol-hypochlorite reaction for determination of ammonia. Anal Chem 39:971–974

    Article  CAS  Google Scholar 

  • Weitz E, Achterberg F (1928) Ãœber höhere Polythionsäuren, I. Mitteil.: Die Hexathionsäure. Ber Dtsch Chem Ges 61:399–408

    Article  Google Scholar 

  • Willstätter R (1903) Ueber die Einwirkung von Hydroperoxyd auf Natriumthiosulfat. Ber Dtsch Chem Ges 36:1831–1833

    Article  Google Scholar 

  • Wood AP, Kelly DP (1986) Chemolithotrophic metabolism of the newly-isolated moderately thermophilic, obligately autotrophic Thiobacillus tepidarius. Arch Microbiol 144:71–77

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Professor Donovan P. Kelly, Professor Emeritus at the University of Warwick, UK, for many stimulating discussions on the subject of chemolithoheterotrophy over the years and his continual encouragement in this area.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rich Boden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Boden, R., Hutt, L.P. (2018). Chemolithoheterotrophy: Means to Higher Growth Yields from This Widespread Metabolic Trait. In: Rojo, F. (eds) Aerobic Utilization of Hydrocarbons, Oils and Lipids. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-39782-5_51-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39782-5_51-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39782-5

  • Online ISBN: 978-3-319-39782-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics