Skip to main content
Log in

The role of stress analysis in the design of force-standard transducers

Analytical, experimental, numerical and statistical methods were applied to approximate the solutions given by design equations of a ring-shaped elastic element used as a force transducer, where the force to be measured is related to diameter variations or to surface strains

  • The William M. Murray lecture, 1980
  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

The thesis proposed in this lecture is that solutions given by design equations representing the behavior of a structure or body will give the best approximation if an integral use is made of theoretical and experimental stress-analysis methods. To demonstrate the validity of the thesis, an investigation is described concerning a ring-shaped elastic element used to measure a force by relating it to diameter variations or to inner and outer surface strains.

To attain this goal, analytical, experimental (strain gages and photoelasticity) and numerical (finite-element) methods were used. The results obtained were investigated through an analysis of the acting nominal force and the influence quantities, namely, force components, parasitic components and interactions of the transducer, testing machine and measurement instrumentation.

Other experimental results based on a statistical analysis were found to make the actual behavior of the elastic element clearer, also they approximate closely the solutions given by design equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brinson, H.F., “Preface”, Proc. 6th International Conference on Experimental Stress Analysis, Munich (1978).

  2. Drucker, D.C., “Thoughts on the Present and Future Interrelation of Theoretical and Experimental mechanics,”The William M. Murray Lectures 1953–1967, ed. by B.E. Rossi, SESA, Westport 189–198 (1968).

    Google Scholar 

  3. Sawla, A., Weiler, W., Peters, M., Bray, A., Levi, E. and Vattasso, M., “A Comparison of Force Standards between the Istituto di Metrologia ‘G. Colonnetti” (IMGC) and the Physikalisch-Technische Bundesanstalt (PTB),” Prepr. 6th Conf. IMEKO TC3, Sawla/1-13 (1977).

  4. Debnam, R.C. andWieringa, H., “An Intercomparison of Force Standard Machines,”VDI-Berichte,212,41–47 (1974).

    Google Scholar 

  5. Wilson, B.L., Tate, D.R. and Borkowski, G., “Proving Rings for Calibrating Testing Machines,” NBS Circular C 454 (1946).

  6. Swindells, B. and Evans, J.C., “Measurement of Load by Elastic Devices,” national Physical Laboratory, Teddington, Notes on Applied Science,21.

  7. Ferrero, C., “Inductive differential transducer dynamometer with high metrological characteristics,” Atti XI Congresso Biennale Internaz. Automazione Strumentazione, Milano (1970).

  8. Bray, A., “The Accuracy of Force Standards and Measurements of Acceleration,”“The dissemination of Force Standards,” Metrology and Fundamental Constants, ed. by A. Ferro-Milone, P. Giacomo, S. Leschiutta, Societa Ital. di Fisica, Bologna, 686–716 (1980).

    Google Scholar 

  9. Timoshenko, S., Strength of Materials I D. Van Nostrand, New York, Ch. XII (1955).

    Google Scholar 

  10. Morley, A., Strength of Materials, Longmans Green, London, Ch. XII (1965).

    Google Scholar 

  11. Pastore, A., Bray, A., Desogus, S. and Vicentini, V., “Influenza dei perni nei dinamometri ad anello,” Atti 2° Convegno Assoc. Ital. Analisi Sollecitazioni (AIAS), 353–362 (1973).

  12. Bray, A., “The design of proving rings with strain gages,”Materialprüfung,12 (6),200–205 (1970).

    Google Scholar 

  13. Bray, A., “Gli anelli dinamometrici. Le formule esatte per la loro progettazione,” Atti 1° Convegno Naz. Assoc. Ital. Analisi Sollecitazioni (AIAS), 83–95 (1972).

  14. Murray, W.M. andStein, P.K., Strain Gage Techniques, Massachusetts Institute of Technology, Cambridge, MA, Ch. VIII, 164 (1958).

    Google Scholar 

  15. Hansel, H., Grundzüge der Fehlerrechnung, VEB Deutscher Verlag der Wissenschaften, Berlin, 32 (1966).

    Google Scholar 

  16. Gallagher, R.H., “Finite Element Analysis: Fundamentals,” Politecnico di Milano, Programma d'Istruzione Permanente (1973).

  17. Weiler, W. and Sawla, A., “The Standard Machines of the National Institutes for Metrology,” PTB-Berichte, PTB-Me-22 (1978).

  18. Bray, A., Ferrero, C., Levi, R. andMarinari, C., “An investigation on parasitic effects on force standard machines,”VDI-Berichte,312,113–122 (1978).

    Google Scholar 

  19. Debnam, R.C. and Jenkins, R.F., “Sources of measurement error during an intercomparison of force standard machines,” IMEKO TC3 Round Table Proc., 18–39 (1976).

  20. Kovacs, S., “Effects of eccentrical and non-axial loads upon the sensitivity of strain gauge load cells,”VDI-Berichte,172,73–86 (1972).

    Google Scholar 

  21. Dietrich, M. and Hasche, K., “Zum Verhalten elektromechanischer Kraftsmesswandler gegenüber nichtidealen Krafteinleitungsbedigungen,” Proc. IMEKO 7th, 23–37 (1973).

  22. Dubois, M., “Multicomponent force transfer standard of 300 kN,” Prepr. 6th Confer. IMEKO TC3, p. Dubois/1-8 (1977).

  23. Tegelaar, P. andWieringa, H., “Some developments at TNO on load cells for weighing purpose,”VDI-Berichte,137,29–40 (1970).

    Google Scholar 

  24. Levi, R., “Performance evaluation of strain=gage dynamometers,” Proc. IMEKO 6th, 61 (1973).

  25. Dubois, M., “Calibration of six-component dynamometric balances,” IMEKO TC3 Round Table Proc. (1976).

  26. Kemeny, T., “Einfluss von schiefen und exzentrischen Belastungen der DMS Kraftmessdosen auf die Messgenauigkeit,” Acta IMEKO (1967).

  27. Dambacher, H., “Force measuring devices for the investigation of testing machines during static and dynamic loading,”VDI-Berichte,212,73–84 (1974).

    Google Scholar 

  28. Levi, R., “Multicomponent Calibration of Machine Tool Dynamometers,”Trans. ASME, J. of Engrg. for Industry,94 (4),1067 (1977).

    Google Scholar 

  29. Gizmajer, A., “Strain gauge load cells. Elimination of the bending moment influence,” Proc. IMEKO 6th, 56–60 (1973).

  30. Dubois, M., “Mesures du coefficient thermoélastique des metaux à l'aide de jauges extensométriques,” Bulletin BNM, Octobre, 19–28 (1976).

  31. Levi, R., “Drill Press Dynamometers,”Int. J. Mach. Tool Des. Res.,7,269 (1966).

    Google Scholar 

  32. Bray, A., “Impianto di taratura delle forze sino a 100 t,”La Ricerca Scientifica,26 (8),2371–2383 (1956).

    Google Scholar 

  33. Johnson, L.G., Theory and Technique of Variation Research, Elsevier, Amsterdam (1974).

    Google Scholar 

  34. Barbato, G., Desogus, S. andLevi, R., “Design studies and characteristics description of the standard dead-weight hardness tester of the Istituto di Metrologia ‘G. Colonnetti,’,”VDI-Berichte,308,97–105 (1978).

    Google Scholar 

  35. Bray, A., “Interaction Dead-Weight Machine — Load Cell,” 7th IMEKO Round Table Disc. TC3, 11–16 (1976).

  36. Debnam, R.C. andJenkins, R.F., “The influence of end loading conditions on the Performance of Strain Gauge Load Cells,”VDI-Berichte,176,53–60 (1972).

    Google Scholar 

  37. Bray, A., “The influence of contact stresses on the Characteristics of a Load Cell,”VDI-Berichte,176,43–49 (1972).

    Google Scholar 

  38. Frocht, M.M., Photoelasticity, J. Wiley Inc., New York,II,Chap. 1 (1948).

    Google Scholar 

  39. Bray, A. andDesogus, S., “Gli estensimetri annegati: nuovo metodo per l'analisi tridimensionale delle tensioni,”Ingegneria Meccanica,19 (12),29–35 (1970).

    Google Scholar 

  40. Levi, R., “Sistema di strumentazione per l'analisi di stati di deformazione con gli estensimetri annegati,”Ingegneria Meccanica,20 (1),47–52 (1971).

    Google Scholar 

  41. Force Measurement Groups of IMGC and PTB, “Comparison of Force Standards Between IMGC and PTB—Part 1: Technical Report; Part 2: Analysis of Results; Part 3: Test Data,” IMGC Technical Report No. 108 (1976).

  42. Barbato, G., Levi, R. and Zompi, A., “Load-cell-design Development by Numerical and Experimental Methods,” presented at the 4th SESA Internat. Congress, Boston, May 1980.

  43. Cochran, W.G. andCox, G.M., Experimental Designs, J. Wiley, New York, Ch. 8A (1957).

    Google Scholar 

  44. Zompi, A. andLevi, R., “Practical Experimental Designs for Multicomponent Dynamometer Calibration,”VDI-Berichte,312,95–102 (1978).

    Google Scholar 

  45. Engl, W. andMlynski, D., “Ein Gütefaktor des mechanischen Verhalten von Kraftmessdosen mit Dehnungsmesstreifen,”Zeitsch. Instr.,69 (4),98–106 (1961).

    Google Scholar 

  46. Malikow, G.F., Sneiderman, A.L. andSulemovits, A.M., “Rastschoti uprugisch tenzometrisheskin elementov,”Mashinostrojenie, Moscow (1964).

    Google Scholar 

  47. Dubois, M., “Liaisons mécaniques dans l'emploi des dynamomètres,” Mesures — Regulation — Automatisme, Avril, 49–50 (1974).

  48. Dubois, M., “Réalisation de dynamomètres à jauges extensométriques de grande précision,” Mesures — Regulation — Automatisme, Juin, 49–56 (1974).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bray, A. The role of stress analysis in the design of force-standard transducers. Experimental Mechanics 21, 1–20 (1981). https://doi.org/10.1007/BF02325922

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02325922

Keywords

Navigation