Skip to main content
Log in

Time behavior of CO2 and O3 in the lower troposphere based on recordings from neighboring mountain stations between 0.7 and 3.0 km ASL including the effects of meteorological parameters

  • Published:
Archives for meteorology, geophysics, and bioclimatology, Series B Aims and scope Submit manuscript

Summary

The continuous recordings of CO2 (1978–1980) and O3 (1977–1980) from neighboring mountain stations at 0.7, 1.8, and 3.0 km sea level are analyzed. CO2 recordings at 3.0 km have been started in late 1980. For O3, about 1000 profile measurements are available achieved by means of the Zugspitze cable car telemetry system between 1.0 and 3.0 km. In the evaluation we derive first the mean monthly diurnal variations of the mentioned gases at the respective measuring station. Furthermore, for claryfying the most varied daily fluctuations at the different levels, additional parameters are included such as sunshine duration, global and diffuse radiation, temperature, air mass character.

For CO2, the activity of the biomass dominates in the valley (0.7 km) while the anthropogenic contribution exists only in winter being very weak. At levels above 1.8 km in the almost entire absence of a daily variation, the global annual variation prevails.

The O3 in the ground layer up to about 800 m above the valley floor appears to be produced photochemically by day through solar radiation whereas anthropogenic influences can be excluded.

At levels above 2 km the stratospheric ozone source is more effective but does not seem to be decisive for the O3 level in the lower troposphere. In the O3 parameterization, too, are considered temperature, radiation, and the atmospheric layer structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reiter, R., Kanter, H. J.: First Results of Simultaneous Recordings of the CO2 Concentration from a Valley Station and a Neighboring Mountain Station at an Altitudinal Difference of About 1 km. Arch. Met. Geoph. Biokl., Ser. B28, 1 (1980).

    Article  Google Scholar 

  2. Woodwell, G. M.: Das Kohlendioxid-Problem. Spektrum der Wissenschaft, First Edition (1978). (German Edition of Scientific American.)

  3. Reiter, R., Sladkovic, R., Carnuth, W.: One Fine Structure and Control of Vertical Aerosol Exchange Between 700 m and 3000 m a.s.l., New Methods and Results. Arch. Met. Geoph. Biokl., Ser. A20, 115 (1971).

    Article  Google Scholar 

  4. Schneider, St. H.: The CO2 Problem: Are There Policy Implications — Yet? An Editorial. Climatic Change2, 203 (1980).

    Article  Google Scholar 

  5. Landsberg, H. E.: Man-Made Climatic Changes. In: The Changing Global Environment (Singer, S. F., ed.). Dordrecht, Holland: Reidel Publishing Company 1975.

    Google Scholar 

  6. Singer, S. F., ed.: The Changing Global Environment. Dordrecht, Holland: Reidel Publishing Company.

  7. Reiter, R., Jäger, H., Carnuth, W., Funk, W.: Lidar Observations of the Mount St. Helens Eruption Clouds Over Mid-Europe, May to July 1980. Geophys. Res. Lett.7, 1099 (1980).

    Article  Google Scholar 

  8. Meixner, F. X., Georgii, H. W., Ockelmann, G., Jäger, H., Reiter, R.: The Arrival of the Mount St. Helens Eruption Cloud Over Europe. Geophys. Res. Lett.8, 163 (1981).

    Article  Google Scholar 

  9. Baes, C. F., Goeller, H. E., Olson, J. S., Rotty, R. M.: The Global Carbon Dioxide Problem. Oak Ridge National Laboratory. Oak Ridge, Tennessee 37830 (1976).

    Google Scholar 

  10. National Academy of Sciences: Energy and Climate. Washington, D.C. (1977).

  11. Revelle, R., Munk, W.: The Carbon Dioxide Cycle and the Biosphere. In: Energy and Climate, National Academy of Sciences, Washington, D.C. (1977).

    Google Scholar 

  12. Williams, J., ed.: Carbon Dioxide, Climate and Society. Proc. IISA Workshop February 21–24, 1978. Oxford: Pergamon Press 1978.

    Google Scholar 

  13. Bach, W., Pankrath, J., Kellog, W., eds.: Man's Impact on Climate. Proc. Internat. Conference, Berlin June 14–16, 1978. New York: Elsevier Scientific Publishing Company 1979.

    Google Scholar 

  14. Albanese, A. S., Meyer Steinberg: Environmental Control Technology for Atmospheric Carbon Dioxide. Final Report, Contract with DOE No. DE-AC02-76CH00016, Brookhaven National Laboratory, Upton, New York 11973 (1979).

    Google Scholar 

  15. U.S. Department of Energy: Some Aspects of the Role of the Shallow Ocean in Global Carbon Dioxide Uptake (Garrels, R. M., Mackenzie, F. T., eds.), Report Workshop, Atlanta, Georgia, March 20–22 (1980).

  16. U.S. Department of Energy; Environmental and Societal Consequences of a Possible CO2 -Induced Climate Change: A Research Agenda. Contract No. 79EV 10019.000 (1980).

  17. U.S. Department of Energy: Proc. Internat. Meeting on Stable Isotopes in Tree-Ring Research (Jacobi, G., ed.), New Paltz, NY, May 22–25, 1979 (1980).

  18. U.S. Department of Energy: Workshop on Environmental and Societal Consequences of a Possible CO2-Induced Climate Change. Annapolis, Maryland, April 2–6, 1979 (1980).

  19. U.S. Department of Energy: A Comprehensive Plan for Carbon Dioxide Effects Research and Assessment. Part I: The Global Carbon Cycle and Climatic Effects of Increasing Dioxide (1980).

  20. Budyko, M. I.: Climate and Life. New York-London: Academic Press 1974.

    Google Scholar 

  21. Grosch, W., Fleck, W., Jost, D.: The Increase of Carbon Dioxide at Rural Sites in Germany. In: Proc. Sec. European Symposium Physico-Chemical Behavior of Atmospheric Pollutants. Commiss. European Communities, 29 Sept.–1 Oct. 1981, Varese, Italy.

  22. Reiter, R.: Die charakteristische natürliche und künstliche Radioaktivität der meteorologischen Luftkörper in 700 und 1800 m Seehöhe. Nukleonik6, 313 (1964).

    Google Scholar 

  23. Reiter, R., Sladkovic, R., Pötzl, K.: Chemische Komponenten des Reinluft-Aerosols in Abhängigkeit von Luftmassencharakter und meteorologischen Bedingungen. Berichte Bunsenges. f. physikal. Chemie82, 1188 (1978).

    Google Scholar 

  24. Bolin, B., Degens, E. T., Kempe, S., Ketner, P., eds.: The Global Carbon Cycle. New York: J. Wiley and Sons 1979.

    Google Scholar 

  25. Gillani, N. V., Wilson, W. E.: Formation and Transport of Ozone in Power Plant Plumes. In: Aerosols: Anthropogenic and Natural, Sources and Transport (Kneip, Th. J., Lioy, P. J., eds.). (Annals of the New York Academy of Sciences, Vol. 338.) New York: 1980.

  26. Dütsch, H. U.: Ozone and Ultraviolet Radiation. In: World Survey of Climatology (Landsberg, H. E., ed.), Vol. 4, Climate of the Free Atmosphere (Rex, D. F., ed.). New York: Elsevier Publ. Co. 1969.

  27. Leighton, Ph. A.: Photochemistry of Air Pollution. New York-London: Academic Press 1961.

    Google Scholar 

  28. Chemical and Photochemical Reaction, Session RA. Cox. In: Proc. Sec. European Symposium Physico-Chemical Behavior of Atmospheric Pollutants. Comiss. European Communities, 29 Sept.–1 Oct. 1981, Varese, Italy.

  29. Lohse, C., Stangl, H., Payrissat, M., Rau, H., Ottobrini, G., Nicollin, B.: Photochemical Experiments Under Simulated Atmospheric Conditions. In: Proc. Sec. European Symposium Physico-Chemical Behavior of Atmospheric Pollutants. Commiss. European Communities, 29 Sept.–1 Oct. 1981, Varese, Italy.

  30. Dept. of Transportation, Climatic Impact Assessment Program. The Natural Stratosphere of 1974. CIAP Monograph 1, Washington, D.C. 20590 (1975).

  31. Reiter, R., Sladkovic, R., Pötzl, K., Kanter, H.-J.: Measurement of Airborne Radioactivity and its Meteorological Application. Part II. Annual Report 1970/71, AEC Document Number NYO-4061-4 (1971).

  32. Reiter, R., Sladkovic, R., Pötzl, K., Carnuth, W., Kanter, H.-J.: Studies on the Influx of Stratospheric Air into the Lower Troposphere Using Cosmic-Ray Produced Radionuclides and Fallout. Arch. Met. Geoph. Biokl., Ser. A20, 211 (1971).

    Article  Google Scholar 

  33. Reiter, R., Kanter, H.-J., Sladkovic, R., Pötzl, K.: Measurement of Airborne Radioactivity and its Meteorological Application, Part VI. Annual Report ERDA Document Number NYO-3425-14 (1977).

  34. Reiter, R., Kanter, H. J., Sladkovic., R., Jäger, H., Pötzl, K.: Measurement of Airborne Radioactivity and its Meteorological Application; Part VIII, DOE Document Number DOE/ET/3425-20 (1980).

  35. Reiter, E. R., Kanter, H. J., Reiter, R., Sladkovic, R.: Lower-Tropospheric Ozone of Stratospheric Origin. Arch. Met. Geoph. Biokl., Ser. A26, 179 (1977).

    Article  Google Scholar 

  36. Reiter, R., Kanter, H.-J.: Daily and Annual Variation of Tropospheric Ozone Under Pure Air Conditions at 740,1780, and 1964 m a.s.l. and its Possible Causes. In: Proc. Ozone Symposium of the IAMAP, 4–9 August, Boulder, Colo., U.S A. (1980).

  37. Singh, H. B., Viezee, W., Johnson, W. B., Ludwig, F. L.: The Impact of Stratospheric Ozone on Tropospheric Air Quality. J. Air Pollution Control Assoc.30, No. 9 (1980).

  38. Robinson, G. D.: The Major Pollutants: Their Emission and Role in the Atmosphere. In: Man's Impact on the Climate (Matthews, W. H., Kellogg, W. W., Robinson, G. D., eds.) Cambridge, Mass.: MIT Press 1971.

    Google Scholar 

  39. Proc. of the Quadrennial Internat. Ozone Symposium of the IAMAP (London, J., ed.), 4–9 August, Boulder, Colo., U.S. A. (1980).

  40. Versino, B., Ott, H., eds.: Proc. First European Symposium on Physico-Chemical Behavior of Atmospheric Pollutants. Comiss. European Communities, 16–18 Oct. 1979, Ispra, Italy.

  41. Lopez, A., Prieur, S., Fontan, J.: Study of the Ozone Source in the Planetary Boundary-Layer. In: Proc. Sec. European Symposium Physico-Chemical Behavior of Atmospheric Pollutants. Comiss. European Communities, 29 Sept.–1 Oct. 1981, Varese, Italy.

  42. Reiter, R.: Luftverunreinigung und Kleinionendichte in Abhängigkeit von Windströmung und Austausch. Arch. Met. Geoph. Biokl., Ser. B14, 53 (1965).

    Article  Google Scholar 

  43. Müller, H., Reiter, R.: Untersuchungen über das Berg-Talwind system und die Ausbreitung von Aerosolpartikeln in einem nordalpinen Quertal (Loisachtal). Umweltschutzkongreß der Arbeitsgemeinschaft Alpenländer 23–25 Oct. 1980, Gardone Riveria, Italy.

  44. Reiter, R., Sladkovic, R., Müller, H.: Spezielle Aspekte zum Berg-Talwindsystem eines direkt in die Bayerische Hochebene übergehenden alpinen Quertales (Loisachtal). XVIème Congrès Internat: de Météorologie Alpine du 22 au 27 Septembre 1980 Aix-Les-Bains, France.

  45. Van Duuren, H., Römer, F. G., Kema, N. V.: Measurements by Aeroplane of the Distribution of Ozone and Primary Air Pollutants. In: Proc. Sec. European Symposium Physico-Chemical Behavior of Atmospheric Pollutants. Commiss. European Communities, 29 Sept-1 Oct. 1981, Varese, Italy.

  46. Inadvertent Climate Modification, Report of the Study of Man's Impact on Climate (SMIG). Cambridge, Mass.: MIT Press 1971.

  47. Woodwell, G. M., Pecan, E. V., eds.: Carbon and Biosphere. Proc. 24th Brookhaven Symposium in Biology, Upton, New York May 16–18, 1972. Tech. Information Center, Office Information Services, AEC (1973).

  48. Budyko, M. I.: Climatic Changes. Amer. Geoph. Union, Washington, D. C., Baltimore, Maryland: Waverly Press Inc.

  49. Lamb, H. H.: Climate; Present, Past and Future, Vol. 1 and 2. London: Methuen & Co. 1972, 1977.

    Google Scholar 

  50. U.S. Department of Energy: Possible Future Environmental Issues for Fossil Fuel Technologies. Final Report, Contract No. ET-78-C-01-2880 (1979).

  51. Manabe, S., Wetherald, R. T., Stouffer, R. J.: Summer Dryness Due to an Increase of Atmospheric CO2-Concentration. Climatic Change3, 347 (1981).

    Google Scholar 

  52. Warrick, R. A., Riebsame, W. E.: Societal Response to CO2-Induced Climate Change: Opportunities for Research. Climatic Change3, 387 (1981).

    Google Scholar 

  53. Chen, R. S.: Interdisciplinary Research and Integration: The Case of CO2 and Climate. Climatic Change3, 429 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The research work was essentially supported by the U.S. Department of Energy, the Commission of the European Communities (Brussels) and the Umweltbundesamt (Berlin).

With 15 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reiter, R., Kanter, H.J. Time behavior of CO2 and O3 in the lower troposphere based on recordings from neighboring mountain stations between 0.7 and 3.0 km ASL including the effects of meteorological parameters. Arch. Met. Geoph. Biocl., Ser. B 30, 191–225 (1982). https://doi.org/10.1007/BF02323361

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02323361

Keywords

Navigation