Skip to main content
Log in

Studies on the influx of stratospheric air into the lower troposphere using cosmic-ray produced radionuclides and fallout

Untersuchungen über den Zufluß stratosphärischer Luft in die untere Troposphäre mit Hilfe von durch kosmische Strahlung erzeugten Radionukliden und Fallout

  • Published:
Archiv für Meteorologie, Geophysik und Bioklimatologie, Serie A Aims and scope Submit manuscript

Summary

The paper outlines a procedure permitting continuous detailed study of the air mass exchange between stratosphere and troposphere. At the Zugspitze peak (2964 m a. s. l.), since 10. 11. 1969, daily aerosol samples from 2000 m3 each have been accumulated on membrane filters, over a period of 24 hours in each case. From these the radionuclides P 32 and Be 7 and some fallout elements predominantly originating from the stratosphere are chemically separated. Their concentration is determined by beta or gamma spectrometry. By comparing the variation of these values with time, against the development of the weather at tropopause level and inside the troposphere, it is possible, with the aid of coarse analysis, to draw conclusions as to the exchange processes between stratosphere and troposphere as well as the trajectories of the radioactive matter. Detailed results are obtained by means of isentropic trajectory analysis. The latter is based upon the radiosonde ascents of the area of the Atlantic Ocean and Europe. Performance of this fine analysis is demonstrated by an example. The results of our investigations are in good agreement with the results of other authors. The continuity of our daily measurements as well as the employment of computers permit the quantitative determination and continuous observation of the air mass exchange between stratosphere and troposphere and the fine structure of the stratospheric-tropospheric exchange mechanism.

Zusammenfassung

Die Arbeit befaßt sich mit langzeitlichen Untersuchungen über den Luftmassenaustausch zwischen Stratosphäre und Troposphäre. Auf der Zugspitze, in 2964 m NN, werden seit November 1969 über jeweils 24 Stunden Membranfilter mit 2000 Kubikmeter Luft exponiert. Die durch kosmische Strahlung in der Stratosphäre erzeugten Radionuklide P 32 und Be 7 sowie die Schwermetalle des Fallout werden chemisch-quantitativ in der Filtermasse bestimmt. Die Konzentration wird mittels Beta-bzw. Gammaspektrometrie gemessen. Die täglichen Schwankungen der Konzentration der erfaßten Radionuklide steht im engen Zusammenhang mit den meteorologischen Bedingungen in der unteren Stratosphäre, im Tropopausenniveau und in der Troposphäre. Eingehende Analysen des Datengutes erlauben die Feststellung der Austauschprozesse zwischen Stratosphäre und Troposphäre und der Transportwege in der Troposphäre. Grundlage bildet die Berechnung isentropischer Trajektorien. Sie stützt sich auf die Radiosonden-aufstiege, welche täglich zweimal im Gebiet Atlantischer Ozean und Europa durchgeführt werden. An einem ausgewählten Beispiel wird die angewandte Methodik im Detail vorgeführt. Die Ergebnisse zeigen, daß eine gute Übereinstimmung mit den bisherigen Vorstellungen über den stratosphärisch-troposphärischen Austausch besteht. 24stündliche Messungen über sehr lange Zeit bieten jedoch die Grundlage, um die maßgebenden meteorologischen Prozesse auch in ihren zeitlichen Details noch besser als bisher zu verstehen. Das Ziel der weiteren Arbeiten ist deshalb auf die Feinstruktur des stratosphärisch-troposphärischen Austausches gerichtet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aegeter, S., N. Bhandari et al: Be 7 and P32 in Ground level air. TellusXVIII, 212 (1966).

    Google Scholar 

  2. Bakulin, V. N., E. E. Senko, B. G. Starikov, andV. A. Trufakin: Investigation of Turbulent Exchange and Wash-Out by Measurement of Natural Radioactivity in Surface Air. J. Geophys. Res.75, 18 (1970).

    Google Scholar 

  3. Bleichrodt, J. F., andVan Abkounde: On the Deposition of Cosmic Ray Produced Beryllium-7. J. Geophys68, 5283–5288 (1963).

    Google Scholar 

  4. Clausen, T.: Measurement of P32 Activity in a Liquid Scintillation Counter Without the Use of Scintillator. Analyt. Biochem.22, 70 (1968).

    Google Scholar 

  5. Danielsen, E. F.: A Determination of the Mass Transported from Stratosphere to Troposphere over North America during a thirty-six hour Interval (abstract). Mitt. Dt. Wetterdienst20 (3), 10–11 (1959).

    Google Scholar 

  6. Danielsen, E. F.: The Laminar Structure of the Atmosphere and Its Relation to the Concept of a Tropopause. Arch. Met. Geoph. Biokl., A,11, 203–322, (1959).

    Google Scholar 

  7. Danielsen, E. F.: Trajectories: Isobaric, Isentropic and Actual. J. Meteorol.18, 479–486 (1961).

    Google Scholar 

  8. Danielsen, E. F.: Radioactivity Transport from Stratosphere to Troposphere. Bull. Mineral Ind. Expt. Sta. Penn. State Univers.33 (6), 1–7 (1964).

    Google Scholar 

  9. Danielsen E. F., K. H. Bergmann, andC. A. Paulson: Radioisotopes, Potential Temperature and Potential Vorticity. 54 pp., Dep. Meteorology and Climatology, Univers. of Washington, Seattle, 1962.

    Google Scholar 

  10. Defant, F., andH. Taba: The Theefold Structure of the Atmosphere and the Characteristics of the Tropopause. Tellus3, 259 (1957).

    Google Scholar 

  11. Drevinsky, P. J., andJ. T. Wasson: Be 7, P 32, P 33, and S 35: Stratospheric Concentrations and Artifical Production. J. Geophys. Res.69, 8 (1964).

    Google Scholar 

  12. Elrick, R. H., andR. P. Parker The Use of Cerenkov Radiation in the Measurement of β-Emitting Radionuclides. Int. App. Rad. Isotopes19, 263 (1968).

    Google Scholar 

  13. Endlich, R. M., andG. S. McLean: The Structure of the Jet-Stream Core. J. Meteorol.14, 543–552 (1957).

    Google Scholar 

  14. Gedeonov, L. I., andO. A. Rys'yev: Annual Course of Variations in the Concentration of Beryllium-7, Sulfur-35 and Phosphorus-32 in Surface Air and in Fallout in the Area of Leningrad During 1963–1966. USAEC, Health a. Safety Lab.-UNSCEAR Number A/AC. 82/G/L (1969).

  15. Gustafson, P. F., M. A. Kerrigan, andS. S. Brar: Comparison of Be 7 and Cs 137 Radioactivity in Ground Level Air. Nature191, 454 (1961).

    Google Scholar 

  16. HASP: High Altitude Sampling Programm DASA 532 and DASA 539 b and OtSt (1960–1961).

  17. Junge, C. E.: Studie on Global Exchange Processes in the Atmosphere by Natural and Artifical Tracers. J. Geoph. Res.68, 3849 (1963).

    Google Scholar 

  18. Lal, D.: Investigations of Nuclear Interactions Produced by Cosmic Rays. Tata Inst. of Fundamental Res., Bombay, India, 1958.

    Google Scholar 

  19. Lal, D.: 7. On the Investigations of Geophysical Processes Using Cosmic Ray Produced Radioactivity. Earth Science and Meteorotics. Amsterdam: Publishing Comp., 1963.

    Google Scholar 

  20. Lauchli, A.: Radioassay for β-Emitters in Biological Materials Using Cerenkov Radiation. Int. J. Appl. Radiation a. Isotopes20, 265 (1969).

    Google Scholar 

  21. Lindblom, G.: Determination of Concentration of Cs137 in Ground-Level Air in Sweden. Nature193, 866 (1962).

    Google Scholar 

  22. Mahlman, J. D.: Relation of Stratospheric-Tropospheric Mass Exchange Mechanisms to Surface Radioactivity Peaks. Arch. Met. Geoph. Biokl., A,15, 1–25 (1965).

    Google Scholar 

  23. Mahlman, J. D.: Long-Term Dependence of Surface Fallout Fluctuations upon Tropopause-Level Cyclogenesis. Arch. Met. Geoph. Biokl., A,18, 299–311 (1969).

    Google Scholar 

  24. Marenco, A., J. Fontan et al.: Variations des Concentrations de Plomb-210, Polonium 210, Beryllium 7 et Strontium 90 dans l'Air et les precipitations. Intern. Union Geodesy and Geophys. XIVth Gen. Assembly Lucern, 1967.

  25. Murayama, N.: Meteorological Feature of Cosmic Ray Produced Beryllium 7. J. Meteorol. Soc. of Japan42, 1 (1964).

    Google Scholar 

  26. Parker, R. R.: Be 7 and Fission Products in Ground Level Air. Nature193, 967 (1962).

    Google Scholar 

  27. Peirson, D. H.: Beryllium 7 in Air and Rain. J. Geophys. Res.68, 3831 (1963).

    Google Scholar 

  28. Peters, B.: Cosmic Ray Produced Radioisotopes as Tracer for Study of Large-Scale Atmospheric Circulation. J. Atmosph. and Terrest. Phys.13, 351 (1959).

    Google Scholar 

  29. Pötzl, K.: Results of Inorganic Chemical Analysis of Nonpolluted Aerosols Sampled at 1800 m a. s. l. J. Geophys. Res.75, 12 (1970).

    Google Scholar 

  30. Pötzl, K., undW. Carnuth: Isolierung und Identifizierung des atmosphärischen Be 7. Radiochimica Acta6 (1966).

  31. Pötzl, K., undR. Sládkovič: Chemische Hauptkomponenten des Aerosols in 1800 m NN in Abhängigkeit von Luftkörpereigenschaft und Austausch. Vortrag Internat. Tagung für alpine Meteorologie, Oberstdorf, 21. bis 26. September 1970.

  32. Rama, T.: Atmospheric Circulation from Observations of Natural Radioactivity. J. Geophys. Res.68, 3961 (1963).

    Google Scholar 

  33. Reed, R. J.: A Study of Characteristic Type of Upper-Level Frontogenesis. J. Meteorol.12, 226–237 (1955).

    Google Scholar 

  34. Reed, R. J., andF. Sanders: An Investigation of Development of a Mid-Tropospheric Frontal Zone and Its Associated Vorticity Field. J. Meteorol.10, 338–349 (1953).

    Google Scholar 

  35. Reed, R. J., andE. F. Danielsen: Fronts in the Vicinity of the Tropopause. Arch. Met. Geoph. Biokl., A,11, 1–17 (1959).

    Google Scholar 

  36. Reiter, E. R.: Meteorologie der Strahlströme (Jet-Stream) Wien: Springer-Verlag, 1961.

    Google Scholar 

  37. Reiter, E. R.: A Case Study of Radioactive Fallout. Atmosferic Sci, Techn. Paper42, 55 pp., Colorado State University, 1963.

  38. Reiter, E. R.: A Case Study of Radioactive Fallout J. Appl. Meteorol.2, 691–705 (1963).

    Google Scholar 

  39. Reiter, E. R., andJ. D. Mahlman: Heavy Radioactive Fallout over the Southern United States, November 1962. J. Geophys. Res.70, 4501 (1965).

    Google Scholar 

  40. Reiter, E. R., andJ. D. Mahlman: A Case Study of Mass Transport from Stratosphere to Troposphere. Not Associated with Surface Fallout. Colorado State University. Fort Collins, C 00-1340-2, 54 pp. (1965).

    Google Scholar 

  41. Reiter, E. R. andJ. D. Mahlman: Atmospheric Transport Process Leading to Radioactive Fallout over the United States in November 1962. Proc. Second. Conf. Germantown, Maryland, November 1964, C 00-1340-3, 450.

  42. Reiter, E. R., M. E. Glasser et al.: Role of the Tropopause in the Stratospheric-Tropospheric Exchange Processes, C 00-1340-9, Fort Collins. Atm. Sci Jan, Paper No. 107 (1967).

  43. Reiter, R.: Felder, Ströme und Aerosole in der unteren Troposphäre nach Messungen im Hochgebirge zwischen 700 und 3000 m NN. Darmstadt: Verlag Steinkopff, 1964.

    Google Scholar 

  44. Reiter, R., andW. Carnuth: Washout Balance Between 700 and 3000 m a. s. l. Proc. Intern. Conf. on Cloud Physics, Tokyo, 1965.

  45. Reiter, R., undW. Carnuth: Washout-Untersuchungen an Fallout-Partikeln in der unteren Troposphäre zwischen 700 und 3000 m NN. Arch. Met. Geoph. Biokl., A,18, 11 (1969).

    Google Scholar 

  46. Roedel, W.: Cosmic-Ray-Produced Sodium 24 and Other Nuclides in the Lower Atmosphere. J. Geophys. Res.75, 15 (1970).

    Google Scholar 

  47. Ross, H. H.: Measurement of β-Emitting Nuclides Cerenkov Radiation. Analyt. Chemistry41 (10), 1260 (1969).

    Google Scholar 

  48. Sládkovič, R.: Untersuchungen über den Transport des Fallout von der siebenten chinesischen Kernwaffenexplosion in den Alpenraum. Arch. Met. Geoph. Biokl. A,18, 87 (1969).

    Google Scholar 

  49. Schumann, G., andG. Stoeppler: Beryllium 7 in the Atmosphere. J. Geophys. Res.68, 3827 (1963).

    Google Scholar 

  50. Staley, D. O.: Evaluation of Potential Vorticity Changes Near the Tropopause and the Related Vertical Motions, Vertical Advection or Vorticity and Transport of Radioactive Debris from Stratosphere to Troposphere. J. Meteorol.17, 591–620 (1960).

    Google Scholar 

  51. Staley, D. O.: On the Mechanism of Mass and Radioactivity Transport from Stratosphere to Troposphere. J. Atmosph. Sci.19, 450–457 (1962).

    Google Scholar 

  52. Walton, A., andR. E. Fried: The Deposition of Beryllium 7 and Phosphorus 32 in Precipitation at North Temperatur Latitudes. J. Geophys. Res.67, 5335–5340 (1962).

    Google Scholar 

  53. Young, J. A., C. W. Thomas, N. A. Wogman, andR. W. Perkins: Cosmogenic Radionuclide Production Rates in the Atmosphere. J. Geophys. Res.75, 12 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 19 Figures

This research has been sponsored by the U.S. Atomic Energy Commission under Contract AT (30-1)-4061. Invited by the U.S. A.E.C.,R. Reiter had an opportunity in participating in the U.S. A.E.C. Meteorologist-Chemist Workshop at Fort Lauderdale (Florida, U.S.A.) in January 1971. One of the results of the meeting was: in future there should be a better co-operation between meteorologists and chemists and thus from the beginning of a work in the field of atmospheric transports of trace substances. In this connexion it should be expressed that the following sciences are represented by the authors: physics (Carnuth, Reiter), chemistry (Pötzl), meteorology (Kanter, Sládkovič).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reiter, R., Sládkovič, R., Pötzl, K. et al. Studies on the influx of stratospheric air into the lower troposphere using cosmic-ray produced radionuclides and fallout. Arch. Met. Geoph. Biokl. A. 20, 211–246 (1971). https://doi.org/10.1007/BF02248010

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02248010

Keywords

Navigation