Skip to main content
Log in

Inherited metabolic disease in laboratory animals: a review

  • Published:
Journal of Inherited Metabolic Disease

Abstract

Research on the screening for and study of animal models of inherited metabolic disease is reviewed. It is emphasized that an animal model, to be of value, must be an inherited deficiency of the same enzyme as the one deficient in the human syndrome. If this criterion is adhered to there is a remarkable identity in aetiology between animal and man. Specific examples of inherited metabolic disease in laboratory animals are described for: amino acid metabolism, lysosomal storage diseases, carbohydrate metabolism, transport disorders and trace element metabolism; the mutants found in mice being the easiest to manipulate biochemically and genetically. There is still a lack of adequate screening programmes for animal homologues of the more serious human inborn errors (such as lysosomal storage diseases) where laboratory studies could provide significant advances in therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adachi, M., Tsai, C-Y., Hoffman, L. M., Schreck, L. and Volk, B. W. The central nervous system, liver and spleen offm mice.Arch. Pathol. 97 (1974) 232–238

    CAS  PubMed  Google Scholar 

  • Altman, P. L. and Katz, D. (eds.)Inbred and Genetically Defined Strains of Laboratory Animals. Part 1: Mouse and Rat. Fed. Am. Soc. Exp. Biol., Bethesda, 1979

    Google Scholar 

  • Baker, H. J., Lindsey, J. R., McKhann, G. M. and Farrell, D. F. Neuronal GM1 gangliosidosis in a Siamese cat with Β-galactosidase deficiency.Science 174 (1971) 838–839

    CAS  PubMed  Google Scholar 

  • Bannerman, R. M. and Cooper, R. G. Sex-linked anaemia: a hypochromic anaemia of mice.Science 151 (1966) 581–583

    CAS  PubMed  Google Scholar 

  • Bergsma, D. (ed.)Enzyme Therapy in Genetic Disease. Birth Defects: Original Article Series, vol. IX, no. 2, National Foundation-March of Dimes. Williams and Wilkins, Baltimore, 1973

    Google Scholar 

  • Berry, R. J. (ed.)Biology of the House Mouse. Symposium of the Zoological Society of London. Academic Press. London, 1980

    Google Scholar 

  • Blake, R. L. Animal model for hyperprolinaemia: deficiency of mouse proline oxidase activity.Biochem. J. 129 (1972) 987–989

    CAS  PubMed  Google Scholar 

  • Blake, R. L. and Russell, E. S. Hyperprolinaemia and prolinuria in a new inbred strain of mice. PRO/Re.Science 176 (1972) 809–811

    CAS  PubMed  Google Scholar 

  • Bovee, K. C., Thier, S. O., Rea, C. and Segal, S. Renal clearance of amino acids in canine cystinuria.Metabolism 23 (1974) 51–58

    Article  CAS  PubMed  Google Scholar 

  • Brand, E. and Cahill, G. F. Canine cystinuria III.J. Biol. Chem. 114 (1936) XV

    Google Scholar 

  • Brinkhous, K. Animal models: importance in research on haemorrhage and thrombosis.Adv. Exp. Med. 102 (1978) 123–133

    CAS  Google Scholar 

  • Britton, J. and Thaler, L. Evidence for the presence of two sympatric species of mice (Genus Mus. L.) in southern France based on biochemical genetics.Biochem. Genet. 16 (1978) 213–225

    Article  CAS  PubMed  Google Scholar 

  • Brock, D. J. H. and Mayo, O.The Biochemical Genetics of Man, 2nd ed. Academic Press, London, 1979

    Google Scholar 

  • Brunette, M. G., Chabardes, D., Imbert-Teboul, M., Clique, A., Motegut, M. and Morel, F. Hormone-sensitive adenylate cyclase along the nephron of genetically hypophosphataemic mice.Kidney Int. 15 (1979) 357–369

    CAS  PubMed  Google Scholar 

  • Bulfield, G. Nutrition and animal models of inherited metabolic disease.Proc. Nutr. Soc. 36 (1977) 61–67

    CAS  PubMed  Google Scholar 

  • Bulfield, G. Inborn errors of metabolism in the mouse. In Berry, R. J. (ed.)Biology of the House Mouse. Symposium of the Zoological Society of London. Academic Press, London, 1980

    Google Scholar 

  • Bulfield, G. and Kacser, H. Histidinaemia in man and mouse.Arch. Dis. Child. 49 (1974) 545–552

    CAS  PubMed  Google Scholar 

  • Bulfield, G. and Kacser, H. Histamine and histidine levels in the brain of the histidinaemic mutant mouse.J. Neurochem. 24 (1975) 403–405

    CAS  PubMed  Google Scholar 

  • Bulfield, G. and Moore, K. Screening and study of inherited enzyme deficiencies of erythrocyte glycolysis and associated pathways in wild mice.Hereditas 89 (1978) 140

    Google Scholar 

  • Bulfield, G. and Nahum, A. Effect of the mouse mutants testicular feminization and sex reversal on hormonemediated induction and repression of enzymes.Biochem. Genet. 16 (1978) 743–750

    CAS  PubMed  Google Scholar 

  • Bulfield, G., Whitehouse, A. A. G. and Kacser, H. The control of amino acid metabolismin vivo in histidinaemic and prolinaemic mice. (1980) (Submitted for publication)

  • Bullock, L. P. and Bardin, C. W. Androgen receptors in mouse kidney: a study of male and female and androgen-insensitive (tfm/Y) mice.Endocrinology 94 (1974) 746–756

    CAS  PubMed  Google Scholar 

  • Bustad, L. K., Hegreberg, G. A. and Padgett, G. A.Naturally Occurring Animal Models of Human Disease. Institute of Laboratory Animal Resources, National Academy of Sciences, Washington, DC, 1975

    Google Scholar 

  • Camakaris, J., Mann, J. R. and Danks, D. M. Copper metabolism inmottled mouse mutants: copper concentrations in tissues during development.Biochem. J. 180 (1979) 597–604

    CAS  PubMed  Google Scholar 

  • Chapman, V. M., Paigen, K., Siracusa, L. and Womack, J. E. Biochemical variation: mouse. In Altman, P. L. and Katz, D. D. (eds.)Inbred and Genetically Defined Strains of Laboratory Animals. Part I: Mouse and Rat. Fed. Am. Soc. Exp. Biol., Bethesda, 1979, pp. 77–95

    Google Scholar 

  • Chapman, V. and Selander, R. K. Polymorphisms: wild mice. In Altman, P. L. and Katz, D. D. (eds.)Inbred and Laboratory Defined Strains of Laboratory Animals. Part 1: Mouse and Rat. Fed. Am. Soc. Exp. Biol., Bethesda, 1979, pp. 221–227

    Google Scholar 

  • Chassin, S. L., Kruckeberg, W. C. and Brewer, G. J. Thermal inactivation differences of phosphofructokinase in erythrocytes from genetically selected high and low DPG rat strains.Biochem. Biophys. Res. Commun. 83 (1978) 1306–1311

    Article  CAS  PubMed  Google Scholar 

  • Cohen, P. T. W., Burchell, A. and Cohen, P. The molecular basis of skeletal muscle phosphorylase kinase deficiency.Eur. J. Biochem. 66 (1976) 347–356

    Article  CAS  PubMed  Google Scholar 

  • Cohen, P. T. W. and Cohen, P. Skeletal muscle phosphorylase kinase deficiency: detection of a protein lacking any activity in ICR/IAn mice.FEBS Lett. 29 (1973) 113–116

    CAS  PubMed  Google Scholar 

  • Cork, L. C., Munnell, J. F., Lorenz, M. D., Murphy, J. V., Baker, H. J. and Ratazzi, M. C. GM2 ganglioside lysosomal storage disease in cats with Β-hexosaminidase deficiency.Science 196 (1977) 1014–1017

    CAS  PubMed  Google Scholar 

  • Cornelius, C. E. Animal models—a neglected medical resource.N. Engl. J. Med. 281 (1969) 934–944

    CAS  PubMed  Google Scholar 

  • Cornelius, C. E. Animal models: whose responsibility.J. Lab. Clin. Med. 91 (1978) 187–190

    CAS  PubMed  Google Scholar 

  • Cotzias, G. C., Tang, L. C., Miller, S. T. and Sladic-Simic, D. A mutation influencing the transportation of manganese, L-dopa and L-trytophan.Science 176 (1972) 410–412

    CAS  PubMed  Google Scholar 

  • De Mars, R., Le Van, S. L., Trend, B. L. and Russell, L. B. Abnormal ornithine carbamoyltransferase in mice having the sparse-fur mutation.Proc. Natl. Acad. Sci. USA 73 (1976) 1693–1697

    Google Scholar 

  • Denniston, J. C. Children of mothers with phenylketonuria.J. Pediatr. 63 (1963) 461–464

    CAS  PubMed  Google Scholar 

  • Dofuku, R., Tettenborn, U. and Ohno, S. Testosterone-‘regulon’ in the mouse kidney.Nature New Biol. 232 (1971) 5–7

    CAS  PubMed  Google Scholar 

  • Edwards, J. A. and Hoke, J. E. Red cell iron uptake in hereditary microcytic anaemia.Blood 46 (1975a) 381/388

    Google Scholar 

  • Edwards, J. A. and Hoke, J. E. Effect of dietary iron manipulation and phenobarbitone treatment onin vivo intestinal absorption of iron in mice with sex-linked anaemia.Am. J. Clin. Nutr. 28 (1975b) 40–49

    Google Scholar 

  • Eicher, E., Lewis, S. E., Turchin, H. A. and Gluecksohn-Waelsch, S. Absence of mitochondrial malic enzyme in mice carrying two complementing lethal albino alleles.Genet. Res. 32 (1978) 1–7

    CAS  PubMed  Google Scholar 

  • Eicher, E., Southard, J. L., Scriver, C. R. and Glorieux, F. H. Hypophosphatemia: mouse model for human familiar hypophosphatemic (vitamin-D resistant) rickets.Proc. Natl. Acad. Sci. USA 73 (1976) 4667–4671

    CAS  PubMed  Google Scholar 

  • Erway, L. C., Fraser, A. S. and Hurley, L. S. Prevention of congenital otolith defect in pallid mutant mice by manganese supplementation.Genetics 67 (1971) 97–108

    CAS  PubMed  Google Scholar 

  • Erway, L. C., Ganschow, R. E. and Piletz, J. E. Personal communication.Mouse News Lett. 60 (1979) 43

    Google Scholar 

  • Evans, G. W. and Reis, B. L. Impaired copper homeostasis in neonatal male and adult female brindledMo br) mice.J. Nutr. 108 (1978) 554–560

    CAS  PubMed  Google Scholar 

  • Ewing, G. O. Familial non-spherocytic hemolytic anaemia of Basenji dogs.J. Am. Vet. Med. Assoc. 154 (1967) 503–507

    Google Scholar 

  • Feinstein, R. N. Acatalasemia in the mouse and other species.Biochem. Genet. 4 (1970) 135–155

    Article  CAS  PubMed  Google Scholar 

  • Feinstein, R. N., Howard, J. B., Braun. J. T. and Seaholm, J. E. Acatalasemic and hypocatalasemic mouse mutants.Genetics 53 (1966) 923–933

    CAS  PubMed  Google Scholar 

  • Feinstein, R. N., Seaholm, J. E., Howard, J. B. and Russell, W. L. Acatalasemic mice.Proc. Natl. Acad. Sci. USA 52 (1964) 661–662

    CAS  PubMed  Google Scholar 

  • Festing, M. F. W.Inbred Strains in Biomedical Research. Macmillan, London, 1979

    Google Scholar 

  • Feuers, R. J., Delongchamp, R. R., Casciano, D. A., Burkhart, J. G. and Mohrenweiser, H. W. Assay for mouse tissue enzymes: levels of activity and statistical variation for 29 enzymes of liver and brain.Anal. Biochem. 101 (1980) 123–130

    Article  CAS  PubMed  Google Scholar 

  • Fredrickson, D. S., Sloan, H. R. and Hansen, C. T. Lipid abnormalities in foam cell reticulosis of mice, an analogue of human sphingomyelin lipidosis.J. Lipid Res. 10 (1969) 288–293

    CAS  PubMed  Google Scholar 

  • Gehring, U., Tomkins, G. M. and Ohno, S. Effect of the androgen insensitive mutation on a cytoplasmic receptor for dihydrotestosterone.Nature New Biol. 232 (1971) 106–107

    CAS  PubMed  Google Scholar 

  • Gerritsen, T. and Siegel, F. L. The use of animal models for the study of aminoacidopathies.Proc. 3rd Int. Congr. Neuro-Genetics and Neuro-Ophthalmology, Monogr. Hum. Genet. 6 (1972) 22–36

    CAS  Google Scholar 

  • Gluecksohn-Waelsch, S., Schiffman, M. B., Thorndike, J. and Cori, C. F. Complementation studies of lethal alleles in the mouse causing deficiencies of glucose-6-phosphatase, tyrosine aminotransferase and serine dehydratase.Proc. Natl. Acad. Sci. USA 71 (1974) 825–829

    CAS  PubMed  Google Scholar 

  • Gross, S. R., Longshore, M. A. and Pangburn, S. The phosphorylase kinase deficiency (PhK) in the mouse: evidence that the mutant allele codes for an enzyme with an abnormal structure.Biochem. Genet. 13 (1975) 567–584

    Article  CAS  PubMed  Google Scholar 

  • Gross, S. R. and Mayer, S. E. Characterization of the phosphorylase B to a converting activity in skeletal muscle extracts of mice with the phosphorylase B kinase deficiency mutation.J. Biol. Chem. 249 (1974) 6710–6718

    CAS  PubMed  Google Scholar 

  • Harris, H.The Principles of Human Biochemical Genetics, 2nd ed. North Holland, London, 1975

    Google Scholar 

  • Harris, H. and Searle, A. G. Urinary amino-acids in mice of different genotypes.Ann. Eugen. 17 (1953) 165–167

    CAS  PubMed  Google Scholar 

  • Hartley, W. J. and Blakemore, W. F. Neurovisceral glucocerebroside storage (Gaucher's disease) in a dog.Vet. Pathol. 10 (1973) 191–201

    CAS  PubMed  Google Scholar 

  • Holmes, E. W. and O'Brien, J. S. Feline GM1 gangliosidosis: characterization of the residual acid Β-galactosidase.Am. J. Hum. Genet. 30 (1978a) 505–515

    CAS  PubMed  Google Scholar 

  • Holmes, E. W. and O'Brien, J. S. Hepatic storage of oligosaccharides and glycolipids in a cat affected with GM1 gangliosidosis.Biochem. J. 175 (1978b) 945–953

    CAS  PubMed  Google Scholar 

  • Hommes, F. A. (ed.)Models for the Study of Inborn Errors of Metabolism. North Holland Biomedical Press, Amsterdam, 1979

    Google Scholar 

  • Huijing, F. Phosphorylase kinase deficiency in mice.FEBS Lett. 10 (1970) 328–332

    Article  CAS  PubMed  Google Scholar 

  • Hunt, D. M. Primary defect in copper transport underlies mottled mutants in the mouse.Nature 249 (1974) 852–854

    CAS  PubMed  Google Scholar 

  • Hunt, D. M. A study of copper treatment and tissue copper levels in the murine congenital copper deficiency mottled.Life Sci. 19 (1976) 1913–1920

    Article  CAS  PubMed  Google Scholar 

  • Hunt, D. M. and Johnson, D. R. Aromatic amino acid metabolism in brindled (Mo br) and viable-brindled (Mo vbr), two alleles at the mottled locus in the mouse.Biochem. Genet. 6 (1972a) 31–40

    Article  CAS  PubMed  Google Scholar 

  • Hunt, D. M. and Johnson, D. R. An inherited deficiency in noradrenaline biosynthesis in the brindled mouse.J. Neurochem. 19 (1972b) 2811–2819

    CAS  PubMed  Google Scholar 

  • Hunt, D. M. and Port, A. E. Trace element binding in the copper deficient mottled mutants in the mouse.Life Sci. 24 (1979) 1453–1466

    Article  CAS  PubMed  Google Scholar 

  • Hutton, J. J. and Bernstein, S. E. Metabolic properties of erythrocytes of normal and genetically anaemic mice.Biochem. Genet. 10 (1973) 297–307

    Article  CAS  PubMed  Google Scholar 

  • ILAR,Selected Abstracts on Animal Models for Biomedical Research, I–IV. Institute of Laboratory Animal Resources, Natl. Acad. Sci., Washington, DC, 1971–1976

    Google Scholar 

  • ILAR News. Institute of Laboratory Animal Resources, Natl. Acad. Sci., Washington, DC, 1979

  • Jolly, R. D. and Blakemore, W. F. Inherited lysosomal storage diseases. An essay in comparative medicine.Vet. Rec. 92 (1973) 391–400

    CAS  PubMed  Google Scholar 

  • Jones, T. C., Hackel, D. B. and Migaki, G. (eds.)Handbook. Animal Models of Human Disease. First to Sixth Fascicles. Registry of Comparative Pathology. Armed Forces Institute of of Pathology, Washington, DC, 1972–1977

    Google Scholar 

  • Kacser, H., Bulfield, G. and Wallace, M. E. Histidinaemic mutant in the mouse.Nature 244 (1973) 77–79

    Article  CAS  PubMed  Google Scholar 

  • Kacser, H., Bulfield, G. and Wright, A. The biochemistry and genetics of histidinaemia in mice. In Hommes, F. A. (ed.)Models for the Study of Inborn Errors of Metabolism. North Holland Biochemical Press, Amsterdam, 1979a, pp. 33–42

    Google Scholar 

  • Kacser, H. and Burns, J. A. Molecular democracy: who shares the controls?Biochem. Soc. Trans. 7 (1979) 1149–1160

    CAS  PubMed  Google Scholar 

  • Kacser, H., Mya Mya, K. and Bulfield, G. Endogenous teratogenesis in maternal histidinaemia. In Hommes, F. A. (ed.)Models for the Study of Inborn Errors of Metabolism. North Holland Biomedical Press, Amsterdam, 1979b, pp. 43–56

    Google Scholar 

  • Kacser, H., Mya Mya, K., Duncker, M., Wright, A. F., Bulfield, G., McLaran, A. and Lyon, M. F. Maternal histidine metabolism and its effect on foetal development in the mouse.Nature 265 (1977) 262–266

    Article  CAS  PubMed  Google Scholar 

  • Kalter, H. Mutant gene effects: mouse. Part I: Congenital malformations. In Altman, P. L. and Katz, D. (eds.)Inbred and Genetically Defined Strains of Laboratory Animals. Part 1: Mouse and Rat. Fed. Am. Sci. Exp. Biol., Bethesda, 1979, pp. 55–63

    Google Scholar 

  • Kutscher, C. L., Millon, M. and Schmalbach, N. L. Renal deficiency associated with diabetes insipidus in the SWR/J mouse.Physiol. Behav. 14 (1975) 815–818

    Article  CAS  PubMed  Google Scholar 

  • Lyon, I. C. T., Gardner, R. J. M. and Veale, A. M. D. Human maternal histidinaemia.Arch. Dis. Child. 49 (1974) 581–583

    CAS  PubMed  Google Scholar 

  • Lyon, J. B. The X-chromosome and enzymes controlling muscle glycogen: phosphorylase kinase.Biochem. Genet. 4 (1970) 169–185

    Article  CAS  PubMed  Google Scholar 

  • Lyon, J. B., Porter, J. and Robertson, M. Phosphorylase B kinase inheritance in mice.Science 155 (1967) 1550–1551

    CAS  PubMed  Google Scholar 

  • Lyon, M. F. Stage of action of the litter-size effect on absence of otoliths in the mouse.Z. Ind. Abst. Verebl. 86 (1954) 289–292

    CAS  Google Scholar 

  • Lyon, M. F. Gene action in the X-chromosome of the mouse (Mus musculus L.).Nature 190 (1961) 372–373

    CAS  PubMed  Google Scholar 

  • Lyon, M. F. Possible mechanisms of X-chromosome inactivation.Nature New Biol. 232 (1971) 229–232

    CAS  PubMed  Google Scholar 

  • Lyon, M. F. and Hawkes, S. G. X-linked gene for testicular feminization in the mouse.Nature 227 (1970) 1217–1218

    Article  CAS  PubMed  Google Scholar 

  • Lyon, M. F., Hulse, K. and Rowe, G. E. Foam-cell reticulosis of mice: an inherited condition resembling Gaucher's and Niemann-Pick disease.J. Med. Genet. 2 (1965) 99–106

    Google Scholar 

  • McKusick, V. A.Mendelian Inheritance in Man, 5th ed. Johns Hopkins University Press, Baltimore, 1978

    Google Scholar 

  • Mann, J. R., Camakaris, J. and Danks, D. M. Copper metabolism in mottled mutant mice. Distribution of64Cu in brindled (Mo br) mice.Biochem. J. 180 (1979b) 613–619

    CAS  PubMed  Google Scholar 

  • Mann, J. R., Camakaris, J., Danks, D. M. and Walliczek, E. G. Copper metabolism in mottled mouse mutants. Copper therapy of brindled (Mo br) mice.Biochem. J. 180 (1979a) 605–612

    CAS  PubMed  Google Scholar 

  • Meisler, M., Orlowski, C., Gross, E. and Bloor, J. H. Cadmium metabolism incdm/cdm mice.Biochem. Genet. 17 (1979) 731–736

    Article  CAS  PubMed  Google Scholar 

  • Mohrenweiser, H. W. and Erickson, R. P. Enzyme changes associated with mitochondrial malic enzyme deficiency in mice.Biochem. Biophys. Acta 587 (1979) 313–323

    CAS  PubMed  Google Scholar 

  • Morse, H. C. (ed.)Origins of Inbred Mice. Academic Press, New York, 1978

    Google Scholar 

  • Novak, E. K. and Swank, R. T. Lysosomal dysfunctions associated with mutations at mouse pigment genes.Genetics 92 (1979) 189–204

    CAS  PubMed  Google Scholar 

  • O'Doherty, P. J. A., De Luca, H. F. and Eicher, E. M. Intestinal calcium and phosphate transport in genetic hypophosphatemic mice.Biochem. Biophys. Res. Commun. 71 (1976) 617–621

    PubMed  Google Scholar 

  • Oliver, C. and Essner, E. Distributions of anomalous lysosomes in the beige mouse: a homologue of the Chediak-Higashi syndrome.J. Histochem. Cytochem. 21 (1973) 218–228

    CAS  PubMed  Google Scholar 

  • Padgett, G. A., Holland, J. M., Prieur, D. J., Davis, W. C. and Gorham, J. R. The Chediak-Higashi syndrome: a review of the disease in man, mink, cattle and mice. InAnimal Models for Biomedical Research III. National Academy of Sciences, Washington, DC, 1970, pp. 1–12

    Google Scholar 

  • Padgett, G. A., Reiquam, C. W., Gorham, J. R., Henson, I. B. and O'Mary, C. C. Comparative studies of the Chediak-Higashi syndrome.Am. J. Pathol. 51 (1967) 553–571

    CAS  PubMed  Google Scholar 

  • Padua, R. A., Bulfield, G. and Peters, J. Biochemical genetics of a new glucosephosphate isomerase (Gpi-1c) from wild mice.Biochem. Genet. 16 (1978) 127–143

    Article  CAS  PubMed  Google Scholar 

  • Paigen, K. Acid hydrolases as models of genetic control.Annu. Rev. Genet. 13 (1979) 417–466

    Article  CAS  PubMed  Google Scholar 

  • Percy, D. H. and Jortner, B. S. Feline lipidosis. Light and electron microscope studies.Arch. Pathol. 92 (1971) 136–144

    CAS  PubMed  Google Scholar 

  • Piletz, J. E. and Ganschow, R. E. Zinc deficiency in murine milk underlies expression of thelethal milk (lm) mutation.Science 199 (1978) 182–183

    Google Scholar 

  • Pivetta, O. H. and Green, E. L. Exocrine pancreatic insufficiency: a new recessive mutation in the mouse.J. Hered. 64 (1973) 301–302

    CAS  PubMed  Google Scholar 

  • Popp, R. A., Stratton, L. P., Hawley, D. K. and Effron, K. Haemoglobin of mice with radiation-induced mutations at the haemoglobin loci.J. Mol. Biol. 127 (1979) 141–148

    Article  CAS  PubMed  Google Scholar 

  • Port, A. E. and Hunt, D. M. A study of copper binding proteins in liver and kidney tissues of neonatal normal and mottled mutant mice.Biochem. J. 183 (1979) 721–730

    CAS  PubMed  Google Scholar 

  • Potier, M., Lu Shun Yan, D. and Womack, J. E. Neuraminidase deficiency in the mouse.FEBS Lett. 108 (1979) 345–348

    Article  CAS  PubMed  Google Scholar 

  • Prichard, R. W. The need for new animal models—a philosophic approach.J. Am. Vet. Med. Assoc. 173 (1978) 1208–1209

    CAS  PubMed  Google Scholar 

  • Ratazzi, M. C., Baker, H. A., Cork, L. C., Cox, N. R., Lanse, S. B., McCullough, R. A. and Munnell, J. F. The domestic cat as a model for human GM2 gangliosidosis: pathogenic and therapeutic aspects. In Hommes, F. A. (ed.)Models for the Study of Inborn Errors of Metabolism. Elsevier/North Holland, Oxford, 1979, pp. 57–74

    Google Scholar 

  • Rauch, H. Personal communication.Mouse News Lett. 56 (1977) 48

    Google Scholar 

  • Read, D. H., Harrington, D. D., Keenan, T. W. and Hinsman, E. J. Neuronal-visceral GM1 gangliosidosis in a dog with Β-galactosidase deficiency.Science 194 (1976) 442–445

    CAS  PubMed  Google Scholar 

  • Reynolds, G. D., Baker, H. J. and Reynolds, R. H. Enzyme replacement using liposome carriers in feline GM1 gangliosidosis fibroblasts.Nature 275 (1978) 754–755

    Article  CAS  PubMed  Google Scholar 

  • Russell, E. S. Hereditary anaemias of the mouse: a review for geneticists.Adv. Genet. 20 (1979) 357–459

    CAS  PubMed  Google Scholar 

  • Russell, L. B., Russell, W. L., Popp, R. A., Vaughan, C. and Jacobson, K. B. Radiation-induced mutations at mouse haemoglobin loci.Proc. Natl. Acad. Sci. USA 73 (1976) 2843–2846

    CAS  PubMed  Google Scholar 

  • Rugh, R. Why radiobiology?Radiology 82 (1964) 917–920

    CAS  PubMed  Google Scholar 

  • Schiffman, M. B., Santorineou, M. L., Lewis, S. E., Turchin, H. A. and Gluecksohn-Waelsch, S. Lipid deficiencies, leukocytosis, brittle skin—a lethal syndrome caused by a recessive mutation, edematous (oed) in the mouse.Genetics 81 (1975) 525–536

    CAS  PubMed  Google Scholar 

  • Schwartz, A. Animal models of human disease, preface for the series.Yale J. Biol. Med. 51 (1978) 191–192

    CAS  PubMed  Google Scholar 

  • Scriver, C. R., Chesney, R. W. and McInnes, R. R. Genetic aspects of renal tubular transport: diversity and topology of carriers.Kidney Int. 9 (1976) 147–171

    Google Scholar 

  • Scriver, C. R., Mclnnes, R. R. and Mohyuddin, F. Role of epithelial architecture and intracellular metabolism in proline uptake and transtubular reclamation in PRO/Re mouse kidney.Proc. Natl. Acad. Sci. USA 72 (1975) 1431–1435

    CAS  PubMed  Google Scholar 

  • Searcy, G. P., Miller, D. R. and Tasker, J. B. Congenital hemolytic anaemia in the Basenji dog due to erythrocyte pyruvate kinase deficiency.Can. J. Comp. Med. 35 (1971) 67–70

    CAS  PubMed  Google Scholar 

  • Searle, A. Editorial.Mouse News Lett. 62 (1980)

  • Soares, E. R. TEM-induced gene mutations at enzyme loci in the mouse.Environ. Mutagen. 1 (1980) 19–25

    Google Scholar 

  • Sorbie, J. and Valberg, L. S. Reversibility of the defect in intestinal iron transport in mice with sex-linked anaemia (abstract).Clin. Res. 19 (1971) 780

    Google Scholar 

  • Sordelli, D. D., Cassino, R. J. J. and Pivetta, O. H. Animal model for cystic fibrosis: pulmonary clearance ofStaphylococcus aureus in mice treated with reserpine.Life Sci. 24 (1979) 2003–2010

    Article  CAS  PubMed  Google Scholar 

  • Standerfer, R. J., Rittenberg, M. B., Chern, C. J., Templeton, J. W. and Black, J. A. Canine erythrocyte pyruvate kinase. II. Properties of the abnormal enzyme associated with hemolytic anaemia in the Basenji dog.Biochem. Genet. 13 (1975) 341–351

    Article  CAS  PubMed  Google Scholar 

  • Starcher, B., Madaras, J. A., Fisk, D., Perry, E. F. and Hill, C. H. Abnormal cellular copper metabolism in the blotchy mouse.J. Nutr. 108 (1978) 1229–1233

    CAS  PubMed  Google Scholar 

  • Stephens, M. C., Bernatsky, A., Legier, G. and Kaufer, J. N. The Gaucher mouse: additional biochemical alterations.J. Neurochem. 32 (1979) 969–972

    CAS  PubMed  Google Scholar 

  • Sutton, H. E. and Wagner, R. P. Mutation and enzyme function in humans.Annu. Rev. Genet. 9 (1975) 187–212

    Article  CAS  PubMed  Google Scholar 

  • Tasker, J. B., Severin, G. A., Young, S. and Gillette, E. L. Familial hemolytic anaemia in the Basenji dog.J. Am. Vet. Med. Assoc. 154 (1969) 158–165

    CAS  PubMed  Google Scholar 

  • Taylor, B. A., Heiniger, H. J. and Meier, H. Genetic analysis of resistance to cadmium induced testicular damage in mice.Proc. Soc. Exp. Biol. Med. 143 (1973) 629

    CAS  PubMed  Google Scholar 

  • Tenenhouse, H. S. and Scriver, C. R. The defect in transcellular transport of phosphate in the nephron is located in brush-border membranes in X-linked hypophosphataemia (Hyp mouse model).Can. J. Biochem. 56 (1978) 640–646

    CAS  PubMed  Google Scholar 

  • Tenenhouse, H. S., Scriver, C. R., McInnes, R. R. and Glorieux, F. H. Renal handling of phosphatein vivo andin vitro by the X-linked hypophophataemic male mouse: evidence for a defect in the brush-border membrane.Kidney Int. 14 (1978) 236–244

    CAS  PubMed  Google Scholar 

  • Toole, J. J., Hastie, N. D. and Held, W. A. An abundant androgen-regulated mRNA in the mouse kidney.Cell 17 (1979) 441–448

    Article  CAS  PubMed  Google Scholar 

  • Tsan, M-F., Jones, T. C., Thornton, G. W., Levy, H. L., Gilmore, C. and Wilson, T. H. Canine cystinuria: its urinary amino acid pattern and genetic analysis.Am. J. Vet. Res. 33 (1972) 2455–2461

    CAS  PubMed  Google Scholar 

  • Valberg, L. S., Sorbie, J. and Ludwig, J. Mucosal iron-binding proteins in mice with X-linked anaemia.Br. J. Haemalol. 35 (1971) 321–330

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

I would like to thank S. A. Martin for her helpful comments on this review. The work from the author's laboratory is supported by the MRC.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bulfield, G. Inherited metabolic disease in laboratory animals: a review. J Inherit Metab Dis 3, 133–143 (1980). https://doi.org/10.1007/BF02312547

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02312547

Keywords

Navigation