Skip to main content
Log in

An interactive multiobjective programming approach to combinatorial data analysis

  • Articles
  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

Combinatorial optimization problems in the social and behavioral sciences are frequently associated with a variety of alternative objective criteria. Multiobjective programming is an operations research methodology that enables the quantitative analyst to investigate tradeoffs among relevant objective criteria. In this paper, we describe an interactive procedure for multiobjective asymmetric unidimensional seriation problems. This procedure uses a dynamic-programming algorithm to partially generate the efficient set of sequences for small to medium-sized problems, and a multioperation heuristic to estimate the efficient set for larger problems. The interactive multiobjective procedure is applied to an empirical data set from the psychometric literature. We conclude with a discussion of other potential areas of application in combinatorial data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arabie, P. (1991). Was Euclid an unnecessarily sophisticated psychologist?Psychometrika, 56, 567–587.

    Article  Google Scholar 

  • Arabie, P., & Hubert, L.J. (1996). An overview of combinatorial data analysis. In P. Arabie, L.J. Hubert, & G. De Soete (Eds.),Clustering and classification (pp. 5–63). River Edge, NJ: World Scientific Publishing.

    Google Scholar 

  • Baker, F. B., & Hubert, L.J. (1977). Applications of combinatorial programming to data analysis: Seriation using asymmetric proximity measures.British Journal of Mathematical and Statistical Psychology, 30, 154–164.

    Google Scholar 

  • Constantine, A.G., & Gower, J.C. (1978). Graphical representation of asymmetric matrices.Applied Statistics, 27, 297–304.

    Google Scholar 

  • Defays, D. (1978). A short note on a method of seriation.British Journal of Mathematical and Statistical Psychology, 31, 49–53.

    Google Scholar 

  • de Leeuw, J., & Heiser, W.J. (1977). Convergence of correction-matrix algorithms for multidimensional scaling. In J.C. Lingoes, E.E. Roksam, & I. Borg (Eds),Geometric representations of relational data: Readings in multidimensional scaling (pp. 735–752). Ann Arbor, MI: Mathesis Press.

    Google Scholar 

  • de Leeuw, J., & Heiser, W.J. (1980). Multidimensional scaling with restrictions on the configuration of points. In P.R. Krishnaiah (Ed.),Multivariate analysis (Vol. 5, pp. 501–522). Amsterdam: North-Holland.

    Google Scholar 

  • DeSarbo, W.S., Oliver, R.L., & Rangaswamy, A. (1989). A simulated annealing methodology for clusterwise linear regression.Psychometrika, 54, 707–736.

    Google Scholar 

  • De Soete, G., Hubert, L., & Arabie, P. (1988). The comparative performance of simulated annealing on two problems of combinatorial data analysis. In E. Diday (Ed.),Data analysis and informatics (Vol. 5, pp. 489–496). Amsterdam: North Holland.

    Google Scholar 

  • Evans, G.W. (1984). An overview of techniques for solving multiobjective mathematical programs.Management Science, 30, 1268–1282.

    Google Scholar 

  • Flueck, J.A., & Korsh, J.F. (1974). A branch search algorithm for maximum likelihood paired comparison ranking.Biometrika, 61, 621–626.

    Google Scholar 

  • Geoffrion, A.M. (1968). Proper efficiency and the theory of vector maximization.Journal of Mathematical Analysis and Applications, 22, 618–630.

    Article  Google Scholar 

  • Geoffrion, A.M., Dyer, J.S., & Feinberg, A. (1972). An interactive approach for multicriterion optimization with an application to the operation of an academic department.Management Science, 19, 357–368.

    Google Scholar 

  • Groenen, P.J.F. (1993).The majorization approach to multidimensional scaling: Some problems and extensions. Leiden, The Netherlands: DSWO Press.

    Google Scholar 

  • Groenen, P.J.F., & Heiser, W.J. (1996). The tunneling method for global optimization in multidimensional scaling.Psychometrika, 61, 529–550.

    Article  Google Scholar 

  • Hapke, M., Jaszkiewicz, A., & Slowinski, R. (1998). Interactive analysis of multiple-criteria project scheduling problems.European Journal of Operational Research, 107, 315–324.

    Article  Google Scholar 

  • Held, M., & Karp, R.M. (1962). A dynamic programming approach to sequencing problems.Journal of the Society for Industrial and Applied Mathematics, 10, 196–210.

    Google Scholar 

  • Heiser, W.J. (1989). The city-block model for three-way multidimensional scaling. In R. Coppi & S. Belasco (Eds.),Multiway data analysis (pp. 395–404). Amsterdam: North-Holland.

    Google Scholar 

  • Holman, E.W. (1979). Monotonic models for asymmetric proximities.Journal of Mathematical Psychology, 20, 1–15.

    Article  Google Scholar 

  • Hubert, L. (1974). Some applications of graph theory and related nonmetric techniques to problems of approximate seriation: The case of symmetric proximity measures.British Journal of Mathematical and Statistical Psychology, 27, 133–153.

    Google Scholar 

  • Hubert, L.J. (1976). Seriation using asymmetric proximity measures.British Journal of Mathematical and Statistical Psychology, 29, 32–52.

    Google Scholar 

  • Hubert, L.J., Arabie, P., & Hesson-McInnis, M. (1992). Multidimensional scaling in the city-block metric: A combinatorial approach.Journal of Classification, 9, 211–236.

    Google Scholar 

  • Hubert, L., Arabie, P., & Meulman, J. (1997). Linear and circular unidimensional scaling for symmetric proximity matrices.British Journal of Mathematical and Statistical Psychology, 50, 253–284.

    Google Scholar 

  • Hubert, L.J., & Baker, F.B. (1978). Applications of combinatorial programming to data analysis: The traveling salesman and related problems.Psychometrika, 43, 81–91.

    Google Scholar 

  • Hubert, L.J., & Golledge, R.G. (1981). Matrix reorganization and dynamic programming: Applications to paired comparisons and unidimensional seriation.Psychometrika, 46, 429–441.

    Article  Google Scholar 

  • Hubert, L.J., & Schultz, J.V. (1976). Quadratic assignment as a general data analysis strategy.British Journal of Mathematical and Statistical Psychology, 29, 190–241.

    Google Scholar 

  • Hutchinson, J.W. (1989). NETSCAL: A network scaling algorithm for nonsymmetric proximity data.Psychometrika, 54, 25–52.

    Article  Google Scholar 

  • Kok, M. (1986). The interface with decision makers and some experimental results in interactive multiple objective programming methods.European Journal of Operational Research, 26, 96–107.

    Article  Google Scholar 

  • Koopmans, T.C., & Beckmann, M. (1957). Assignment problems and the location of economic activities.Econometrica, 25, 53–76.

    Google Scholar 

  • Krieger, A.M., & Green, P.E. (1996). Modifying cluster-based segments to enhance agreement with an exogenous response variable.Journal of Marketing Research, 33, 351–363.

    Google Scholar 

  • Lawler, E.L. (1964). A comment on minimum feedback arc sets.IEEE Transactions on Circuit Theory, 11, 296–297.

    Google Scholar 

  • Levin, J., & Brown, M. (1979). Scaling a conditional proximity matrix to symmetry.Psychometrika, 44, 239–244.

    Article  Google Scholar 

  • Meulman, J.J. (1992). The integration of multidimensional scaling and multivariate analysis with optimal transformations.Psychometrika, 57, 539–565.

    Article  Google Scholar 

  • Olson, D.L. (1992). Review of empirical studies in multiobjective mathematical programming: subject reflection of nonlinear utility and learning.Decision Sciences, 23, 1–20.

    Google Scholar 

  • Poole, K.T. (1990). Least squares metric, unidimensional scaling of multivariate linear models.Psychometrika, 55, 123–149.

    Article  Google Scholar 

  • Pliner, V. (1996). Metric unidimensional scaling and global optimization.Journal of Classification, 13, 3–18.

    Article  Google Scholar 

  • Ringuest, J.L. (1992).Multiobjective optimization: Behavioral and computational considerations. Norwell, MA: Kluwer Academic Publishers.

    Google Scholar 

  • Rodgers, J.L., & Thompson, T.D. (1992). Seriation and multidimensional scaling: A data analysis approach to scaling asymmetric proximity matrices.Applied Psychological Measurement, 16, 105–117.

    Google Scholar 

  • Rosenthal, R.E. (1985). Principles of multiobjective optimization.Decision Sciences, 16, 133–152.

    Google Scholar 

  • Simantiraki, E. (1996). Unidimensional scaling: A linear programming approach minimizing absolute deviations.Journal of Classification, 13, 19–25.

    Article  Google Scholar 

  • Soland, R.M. (1979). Multicriteria optimization: A general characterization of efficient solutions.Decision Sciences, 10, 26–38.

    Google Scholar 

  • Späth, H. (1979). Algorithm 39: Clusterwise linear regression.Computing, 22, 367–373.

    Article  Google Scholar 

  • Szczotka, F. (1972). On a method of ordering and clustering of objects.Zastosowania Mathemetyki, 13, 23–33.

    Google Scholar 

  • Thurstone, L.L. (1927). The method of paired comparison of social values.Journal of Abnormal and Social Psychology, 31, 384–400.

    Google Scholar 

  • Vriens, M., Wedel, M., & Wilms, T. (1996). Metric conjoint segmentation methods: A Monte Carlo comparison.Journal of Marketing Research, 33, 73–85.

    Google Scholar 

  • Wallenius, J. (1975). Comparative evaluation of some interactive approaches to multicriterion optimization.Management Science, 21, 1387–1396.

    Google Scholar 

  • Weeks, D.G., & Bentler, P.M. (1982). Restricted multidimensional scaling models for asymmetric proximities.Psychometrika, 47, 201–208.

    Article  Google Scholar 

  • Zielman, B., & Heiser, W.J. (1996). Models for asymmetric proximities.British Journal of Mathematical and Statistical Psychology, 49, 127–146.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Brusco.

Additional information

Stephanie Stahl is a freelance writer and editor. She can be reached via e-mail at s-stahl@worldnet.att.net.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brusco, M.J., Stahl, S. An interactive multiobjective programming approach to combinatorial data analysis. Psychometrika 66, 5–24 (2001). https://doi.org/10.1007/BF02295729

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02295729

Key words

Navigation