Skip to main content
Log in

Netscal: A network scaling algorithm for nonsymmetric proximity data

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

A simple property of networks is used as the basis for a scaling algorithm that represents nonsymmetric proximities as network distances. The algorithm determines which vertices are directly connected by an arc and estimates the length of each arc. Network distance, defined as the minimum pathlength between vertices, is assumed to be a generalized power function of the data. The derived network structure, however, is invariant across monotonic transformations of the data. A Monte Carlo simulation and applications to eight sets of proximity data support the practical utility of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen, J. R. (1976).Language, memory and thought. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Anderson, J. R. (1983).The architecture of cognition. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Anderson, J. R., & Bower, G. H. (1973).Human associative memory. Washington, DC: Winston.

    Google Scholar 

  • Bobrow, D. G., & Fraser, J. B. (1969). An augmented state transition network analysis procedure.Proceedings of the International Joint Conference on Artificial Intelligence, Washington, DC, 557–567.

  • Burt, R. S. (1980). Models of network structure.Annual Review of Sociology, 6, 79–141.

    Google Scholar 

  • Chandler, J. D. (1969). STEPIT—Finds local minima of a smooth function of several parameters.Behavioral Science, 14, 81–82.

    Google Scholar 

  • Chino, N. (1978). A graphical technique for representing the asymmetric relationships betweenN objects.Behaviormetrika, 5, 23–40.

    Google Scholar 

  • Cohen, B. H., Bousefield, W. A., & Whitmarsh, G. A. (1957, August).Cultural norms for verbal items in 43 categories (University of Connecticut Technical Report No. 22). Storrs: University of Connecticut.

    Google Scholar 

  • Collins, A. M., & Loftus, E. F. (1975). A spreading-activation theory of semantic processing.Psychological Review, 82, 407–428.

    Google Scholar 

  • Cunningham, J. P. (1978). Free trees and bidirectional trees as representations of psychological distance.Journal of Mathematical Psychology, 17, 165–88.

    Google Scholar 

  • Curry, R. E. (1975). A random search algorithm for laboratory computers.Behavioral Research Methods and Instrumentation, 7, 369–376.

    Google Scholar 

  • Deese, J. (1962). On the structure of associative meaning.Psychological Review, 69, 161–175.

    Google Scholar 

  • Deese, J. (1965).The structure of association in language and thought. Baltimore, MD: John Hopkins.

    Google Scholar 

  • De Soete, G., DeSarbo, W. S., Furnas, G. W., & Carroll, J. D. (1984). The estimation of ultrametric and path length trees from rectangular proximity data.Psychometrika, 49, 289–310.

    Google Scholar 

  • Edgell, S. E., Geisler, W. S., & Zinnes, J. L. (1973). A note on a paper by Rumelhart and Greeno.Journal of Mathematical Psychology, 10, 86–90.

    Google Scholar 

  • Feigenbaum, E. A. (1963). The simulation of verbal learning behavior. In E. A. Feigenbaum & J. Feldman (Eds.),Computers and thought (pp. 297–309). New York: McGraw-Hill.

    Google Scholar 

  • Fish, R. S. (1981).Color: Studies of its perceptual, memory and linguistic representation. Unpublished doctoral dissertation, Stanford University.

  • Floyd, R. W. (1962). Algorithm 97, shortest path.Communications ACM, 5, 345.

    Google Scholar 

  • Gondran, M., & Minoux, M. (1984).Graphs and algorithms. New York: Wiley.

    Google Scholar 

  • Goldman, A. J. (1966). Realizing the distance matrix of a graph.Journal of Research of the National Bureau of Standards, Series B: Mathematics and Mathematical Physics, 70, 153–154.

    Google Scholar 

  • Gower, J. C. (1977). The analysis of asymmetry and orthogonality. In J. R. Barra, F. Brodeau, G. Romier, & B. van Custems (Eds.),Recent developments in statistics (pp. 109–123). Amsterdam: North-Holland.

    Google Scholar 

  • Hakimi, S. L., & Yau, S. S. (1964). Distance matrix of a graph and its realizability.Quarterly Journal of Applied Mathematics, 22, 305–317.

    Google Scholar 

  • Harary, F., Normal, R. Z., & Cartwright, D. (1965).Structural models: An introduction to the theory of directed graphs. New York: Wiley.

    Google Scholar 

  • Harshman, R. A., Green, P. A., Wind, Y., & Lundy, M. E. (1982). A model for the analysis of asymmetric data in marketing research.Marketing Science, 1, 205–242.

    Google Scholar 

  • Hayes-Roth, B., & Hayes-Roth, F. (1975). Plasticity in memorial networks.Journal of Verbal Learning and Verbal Behavior, 14, 506–522.

    Google Scholar 

  • Hebb, D. O. (1949).Organization of behavior. New York: Wiley.

    Google Scholar 

  • Henley, N. M. (1969). A psychological study of the semantics of animal terms.Journal of Verbal Learning and Verbal Behavior, 8, 176–184.

    Google Scholar 

  • Hintzman, D. L. (1968). Explorations with a discrimination net model for paired-associate learning.Journal of Mathematical Psychology, 5, 123–162.

    Google Scholar 

  • Holman, E. W. (1979). Monotone models for asymmetric proximities.Journal of Mathematical Psychology, 20, 1–15.

    Google Scholar 

  • Hutchinson, J. W. (1981). Network representations of psychological relations. Unpublished doctoral dissertation, Stanford University.

  • Kaufman, A. (1975).Introduction to the theory of fuzzy subsets (Vol. I). New York: Academic Press.

    Google Scholar 

  • Krantz, D. H., Luce, R. D., Suppes, P., & Tversky, A. (1971).Foundations of measurement (Vol. I). New York: Academic Press.

    Google Scholar 

  • Krumhansl, C. L. (1978). Concerning the applicability of geometric models to similarity data: The interrelationship between similarity and spatial density.Psychological Review, 85, 445–463.

    Google Scholar 

  • Kruskal, J. B. (1956). On the shortest spanning subtree of a graph and the traveling salesman problem.Proceedings of the American Mathematical Society, 7, 48–50.

    Google Scholar 

  • Kruskal, J. B., Young, F. W., & Seery, J. B. (1973).How to use KYST: A very flexible program to do multidimensional scaling and unfolding. Unpublished paper, AT&T Bell Labs, Murray Hill, NJ.

    Google Scholar 

  • Luce, R. D. (1959).Individual choice behavior. New York: Wiley.

    Google Scholar 

  • Marshall, G. R., & Cofer, C. N. (1970). Single-word free-association norms for 328 responses from the Connecticut norms for verbal items in categories. In L. Postman & G. Keppel (Eds.),Norms of word association (pp. 321–360). New York: Academic Press.

    Google Scholar 

  • Mehler, J. (1963). Some effects of grammatical transformations on the recall of English sentences.Journal of Verbal Learning and Verbal Behavior, 2, 346–351.

    Google Scholar 

  • Miller, G. A. (1962). Some psychological studies of grammar.American Psychologist, 17, 748–762.

    Google Scholar 

  • Moeser, S. D., & Tarrant, B. L. (1977). Learning a network of comparisons.Journal of Experimental Psychology: Human Learning and Memory, 3, 643–659.

    Google Scholar 

  • Morrison, H. W. (1963). Testable conditions for triads of paired comparison choices.Psychometrika, 28, 369–390.

    Google Scholar 

  • Newell, A., & Simon, H. (1972).Human problem solving. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Pruzansky, S., Tversky, A., & Carroll, J. D. (1982). Spatial versus tree representations of proximity data.Psychometrika, 47, 3–24.

    Google Scholar 

  • Restle, F. (1961).Psychology of judgment and choice. New York: Wiley.

    Google Scholar 

  • Rips, L. J., & Stubbs, M. E. (1980). Genealogy and memory.Journal of Verbal Learning and Verbal Behavior, 19, 705–721.

    Google Scholar 

  • Rosch, E. (1978). Principles of categorization. In E. Rosch & B. B. Lloyd (Eds.),Cognition and categorization (pp. 27–48). Hillsdale, NJ: Erlbaum Press.

    Google Scholar 

  • Rosch, E., Mervis, C. B., Gray, W., Johnson, D., & Boyes-Braem, P. (1976). Basic objects in natural categories.Cognitive Psychology, 3, 382–439.

    Google Scholar 

  • Rumelhart, D. L. & Greeno, J. G. (1971). Similarity between stimuli: An experimental test of the Luce and Restle choice models.Journal of Mathematical Psychology, 8, 370–381.

    Google Scholar 

  • Scott, A. (1977). Neurodynamics: A critical survey.Journal of Mathematical Psychology, 15, 1–45.

    Google Scholar 

  • Sjobërg, L. (1975). Choice frequency and similarity.Scandinavian Journal of Psychology, 18, 103–115.

    Google Scholar 

  • Smith, E. E., Shoben, E. J., & Rips, L. J. (1974). Structure and process in semantic memory: A feature model for semantic decisions.Psychological Review, 81, 214–241.

    Google Scholar 

  • Thurstone, L. L. (1927). A law of comparative judgment.Psychological Review, 34, 273–286.

    Google Scholar 

  • Tobler, W. (1976). Spatial interaction patterns.Journal of Environmental Systems, 6, 271–301.

    Google Scholar 

  • Tversky, A. (1972). Elimination by aspects: A theory of choice.Psychological Review, 79, 281–299.

    Google Scholar 

  • Tversky, A. (1977). Features of similarity.Psychological Review, 84, 327–352.

    Google Scholar 

  • Tversky, A., & Sattah, S. (1979). Preference trees.Psychological Review, 86, 542–573.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

I am grateful to Roger Shepard and Amos Tversky for their helpful comments and guidance throughout this project. The work was supported by National Science Foundation Grant BNS-75-02806 to Roger Shepard and a National Science Foundation Graduate Fellowship to the author. Parts of this paper were drawn from a doctoral dissertation submitted to Stanford University (Hutchinson, 1981).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hutchinson, J.W. Netscal: A network scaling algorithm for nonsymmetric proximity data. Psychometrika 54, 25–51 (1989). https://doi.org/10.1007/BF02294447

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02294447

Key words

Navigation