Skip to main content
Log in

A generalized majorization method for least souares multidimensional scaling of pseudodistances that may be negative

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

The usual convergence proof of the SMACOF algorithm model for least squares multidimensional scaling critically depends on the assumption of nonnegativity of the quantities to be fitted, called the pseudodistances. When this assumption is violated, erratic convergence behavior is known to occur. Three types of circumstances in which some of the pseudodistances may become negative are outlined: nonmetric multidimensional scaling with normalization on the variance, metric multidimensional scaling including an additive constant, and multidimensional scaling under the city-block distance model. A generalization of the SMACOF method is proposed to resolve the difficulty that is based on the same rationale frequently involved in robust fitting with least absolute residuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cooper, L. G. (1972). A new solution to the additive constant problem in metric multidimensional scaling.Psychometrika, 37, 311–322.

    Google Scholar 

  • Defays, D. (1978). A short note on a method of seriation.British Journal of Mathematical and Statistical Psychology, 31, 49–53.

    Google Scholar 

  • de Leeuw, J. (1977). Applications of convex analysis to multidimensional scaling. In J. R. Barra, F. Brodeau, G. Romier, & B. van Cutsem (Eds.),Recent developments in statistics (pp. 133–145). Amsterdam: North-Holland.

    Google Scholar 

  • de Leeuw, J. (1984). Differentiability of Kruskal's Stress at a local minimum.Psychometrika, 49, 111–113.

    Google Scholar 

  • de Leeuw, J. (1988). Convergence of the majorization method for multidimensional scaling.Journal of Classification, 5, 163–180.

    Google Scholar 

  • de Leeuw, J., & Heiser, W. J. (1977). Convergence of correction matrix algorithms for multidimensional scaling. In J. C. Lingoes (Ed.),Geometric representation of relational data (pp. 735–752). Ann Arbor: Mathesis Press.

    Google Scholar 

  • de Leeuw, J., & Heiser, W. J. (1980). Multidimensional scaling with restrictions on the configuration. In P. R. Krishnaiah (Ed.),Multivariate analysis, Volume V (pp. 501–522). Amsterdam: North-Holland.

    Google Scholar 

  • Funk, S. G., Horowitz, A. D., Lipshitz, R., & Young, F. W. (1974). The perceived structure of American ethnic groups: The use of multidimensional scaling in stereotype research.Personality and Social Psychology Bulletin, 1, 66–68.

    Google Scholar 

  • Guttman, L. (1968). A general nonmetric technique for finding the smallest coordinate space for a configuration of points.Psychometrika, 33, 469–506.

    Google Scholar 

  • Heiser, W. J. (1981). Unfolding analysis of proximity data. Unpublished doctoral dissertation, University of Leiden.

  • Heiser, W. J. (1986).A majorization algorithm for the reciprocal location problem (Internal report RR-86-12). Leiden: University of Leiden, Department of Data Theory.

    Google Scholar 

  • Heiser, W. J. (1987a).Notes on the LARAMP algorithm (Internal report RR-87-04). Leiden: University of Leiden, Department of Data Theory.

    Google Scholar 

  • Heiser, W. J. (1987b). Correspondence analysis with least absolute residuals.Computational Statistics & Data Analysis, 5, 337–356.

    Google Scholar 

  • Heiser, W. J. (1989). The city-block model for three-way multidimensional scaling. In R. Coppi & S. Bolasco (Eds.),Multiway data analysis (pp. 395–404). Amsterdam: North-Holland.

    Google Scholar 

  • Hubert, L., & Arabie, P. (1986). Unidimensional scaling and combinatorial optimization. In J. de Leeuw, W. J. Heiser, J. J. Meulman, & F. Critchley (Eds.),Multidimensional data analysis (pp. 181–196). Leiden: DSWO Press.

    Google Scholar 

  • Hubert, L., & Arabie, P. (1988). Relying on necessary conditions for optimization: Unidimensional scaling and some extensions. In H. H. Bock (Ed.),Classification and related methods of data analysis (pp. 463–472). Amsterdam: North-Holland.

    Google Scholar 

  • Kruskal, J. B. (1964a). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis.Psychometrika, 29, 1–27.

    Google Scholar 

  • Kruskal, J. B. (1964b). Nonmetric multidimensional scaling: A numerical method.Psychometrika, 29, 115–129.

    Google Scholar 

  • Kruskal, J. B. (1977). Multidimensional scaling and other methods for discovering structure. In K. Enslein, A. Ralston, & H. S. Wilf (Eds.),Statistical methods for digital computers, Volume 3 (pp. 296–339). New York: Wiley.

    Google Scholar 

  • Kruskal, J. B., & Carroll, J. D. (1969). Geometrical models and badness-of-fit functions. In P. R. Krishnaiah (Ed.),Multivariate analysis, Volume 2 (pp. 639–671). Amsterdam: North-Holland.

    Google Scholar 

  • Kruskal, J. B., Young, F. W., & Seery, J. B. (1973).How to use KYST-2: A very flexible program to do multidimensional scaling and unfolding. Unpublished manuscript. Bell Laboratories, Murray Hill, NJ.

    Google Scholar 

  • Roskam, E. E. (1972). Multidimensional scaling by metric transformation of data.Nederlands Tijdschrift voor de Psychologie, 27, 486–508.

    Google Scholar 

  • Stoop, I., & de Leeuw, J. (1982).How to use SMACOF-1B (Internal Report). Leiden: University of Leiden, Department of Data Theory.

    Google Scholar 

  • Torgerson, W. S. (1958).Theory and methods of scaling. New York: Wiley.

    Google Scholar 

  • Young, F. W. (1972). A model for polynomial conjoint analysis algorithms. In R. N. Shepard, A. K. Romney, & S. B. Nerlove (Eds.),Multidimensional scaling, Volume I, Theory (pp. 69–104). New York: Seminar Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

I am grateful to Patrick Groenen and Rian van Blokland-Vogelesang for their help with some of the computations, and to the anonymous referees for their very useful comments.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heiser, W.J. A generalized majorization method for least souares multidimensional scaling of pseudodistances that may be negative. Psychometrika 56, 7–27 (1991). https://doi.org/10.1007/BF02294582

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02294582

Key words

Navigation