Skip to main content
Log in

Geometric representation of association between categories

  • 2004 Presidential Address
  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

Categories can be counted, rated, or ranked, but they cannot be measured. Likewise, persons or individuals can be counted, rated, or ranked, but they cannot be measured either. Nevertheless, psychology has realized early on that it can take an indirect road to measurement: What can be measured is the strength of association between categories in samples or populations, and what can be quantitatively compared are counts, ratings, or rankings made under different circumstances, or originating from different persons. The strong demand for quantitative analysis of categorical data has thus created a variety of statistical methods, with substantial contributions from psychometrics and sociometrics. What is the common basis of these methods dealing with categories? The basic element they share is that the sample space has a special geometry, in which categories (or persons) are point masses forming a simplex, while distributions of counts or profiles of ratings are centers of gravity, which are also point masses. Rankings form a discrete subset in the interior of the simplex, known as the permutation polytope, and paired comparisons form another subset on the edges of the simplex. Distances between point masses form the basic tool of analysis. The paper gives some history of major concepts, which naturally leads to a new concept: the shadow point. It is then shown how loglinear models, Luce and Rasch models, unfolding models, correspondence analysis and homogeneity analysis, forced classification and classification trees, as well as other models and methods, fit into this particular geometrical framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agresti, A. (1990).Categorical Data Analysis. New York: Wiley.

    Google Scholar 

  • Aitchison, J., & Greenacre, M. (2002). Biplots of compositional data.Applied Statistics, 51, 375–392.

    Google Scholar 

  • Andrich, D. (1988). The application of an unfolding model of the PIRT type to the measurement of attitude.Applied Psychological Measurement, 12, 33–51.

    Google Scholar 

  • Andrich, D. (1995). Hyperbolic cosine latent trait models for unfolding direct responses and pairwise preferences.Applied Psychological Measurement, 19, 269–290.

    Google Scholar 

  • Andrich, D. (1996). A hyperbolic cosine latent trait model for unfolding polytomous responses: Reconciling Thurstone and Likert methodologies.British Journal of Mathematical and Statistical Psychology, 49, 347–365.

    Google Scholar 

  • Anglin, M.D., McGlothlin, W.H., & Speckart, G. (1981). The effect of parole on methadone-patient behavior.American Journal of Drug and Alcohol Abuse, 8, 153–170.

    PubMed  Google Scholar 

  • Bakhuis Roozeboom, H.W. (1894). Grafische Darstellung der heterogenen Systeme aus ein bis vier Stoffen, mit Einschluss der Chemischen Umsetzung [Graphical Representation of Heterogeneous Systems in One to Four Substances, Including their Chemical Conversion].Zeitschrift für Physikalische Chemie, 15, 145–158.

    Google Scholar 

  • Bartholomew, D.J. (1980). Factor analysis for categorical data.Journal of the Royal Statistical Society, Series B,42, 293–321.

    Google Scholar 

  • Benzécri, J.-P. (with 33 coauthors) (1973).L'analyse des Données, Tome II: L'analyse des Correspondances [Data Analysis, Part II: Correspondence Analysis]. Paris: Dunod.

    Google Scholar 

  • Benzécri, J.-P. (1992).Correspondence Analysis Handbook. New York: Marcel Dekker.

    Google Scholar 

  • Blasius, J., & Greenacre, M.J. (1998).Vizualization of Categorical Data. New York: Academic Press.

    Google Scholar 

  • Böckenholt, U. (1993). Applications of Thurstonian models to ranking data. In M. Fligner & J. Verducci (Eds.),Probability Models and Statistical Analyses for Ranking Data (pp. 157–172). New York: Springer Verlag.

    Google Scholar 

  • Böckenholt, U. (2002). A Thurstonian analysis of preference change.Journal of Mathematical Psychology, 46, 300–314.

    Google Scholar 

  • Boring, E.G. (1942).Sensation and Perception in the History of Experimental Psychology. New York: Appleton-Century-Crofts.

    Google Scholar 

  • Bradley, R.A., & Terry, M.E. (1952). Rank analysis of incomplete block designs: I. The method of paired comparisons.Biometrika, 39, 324–345.

    Google Scholar 

  • Breiman, L., Friedman, J.H., Olshen, R.A., & Stone, C.J. (1984).Classification and Regression Trees. Belmont, CA: Wadsworth.

    Google Scholar 

  • Busing, F.M.T.A., Groenen, P.J.F., & Heiser, W.J. (2005). Avoiding degeneracy in multidimensional unfolding by penalizing on the coefficient of variation.Psychometrika,70, in press.

  • Carroll, J.D. (1972). Individual differences and multidimensional scaling. In R.N. Shepard, A.K. Romney, & S.B. Nerlove (Eds.),Multidimensional Scaling: Theory and Applications in the Behavioral Sciences, Vol. I. Theory (pp. 105–155). New York: Wiley.

    Google Scholar 

  • Cliff, N., Collins, L.M., Zatkin, J.L., Gallipeau, D., & McCormick, D.J. (1988). An ordinal scaling method for questionnaire and other ordinal data.Applied Psychological Measurement, 12, 83–97.

    Google Scholar 

  • Cohen, A., & Mallows, C.L. (1980).Analysis of ranking data. Technical Report, Bell Telephone Laboratories, Murray Hill, New Jersey.

    Google Scholar 

  • Cohen, A., & Mallows, C.L. (1983). Assessing goodness of fit of ranking models to data.The Statistician, 32, 361–373.

    Google Scholar 

  • Coombs, C.H. (1950). Psychological scaling without a unit of measurement.Psychological Review, 57, 145–158.

    PubMed  Google Scholar 

  • Coombs, C.H. (1964).A Theory of Data. New York: Wiley.

    Google Scholar 

  • Cox, D.R. (1970).The Analysis of Binary Data. London: Methuen.

    Google Scholar 

  • Coxeter, H.S.M. (1973).Regular Polytopes. New York: Dover.

    Google Scholar 

  • Critchlow, D.E. (1985).Metric Methods for Analyzing Partially Ranked Data. New York: Springer Verlag.

    Google Scholar 

  • Daniels, H.E. (1950). Rank correlation and population models.Journal of the Royal Statistical Society, Series B,12, 171–181.

    Google Scholar 

  • Delbeke, L. (1968).Construction of preference spaces: An investigation into the applicability of multidimensional scaling models. Leuven: Leuvense Universitaire Uitgaven.

    Google Scholar 

  • De Rooij, M., & Heiser, W.J. (2005). Graphical representations and odds ratios in a distance-association model for the analysis of cross-classified data.Psychometrika,70, in press.

  • DeSarbo, W.S., & Cho, J. (1989). A stochastic multidimensional scaling vector threshold model for the spatial representation of “pick any/N” data.Psychometrika, 54, 105–129.

    Google Scholar 

  • DeSarbo, W.S., & Hoffman, D.L. (1986). Simple and weighted unfolding threshold models for the spatial representation of binary choice data.Applied Psychological Measurement, 10, 247–264.

    Google Scholar 

  • DeSarbo, W.S., & Rao, V.R. (1984). GENFOLD2: A set of models and algorithms for the GENeral unfolding analysis of preference/dominance data.Journal of Classification, 1, 147–186.

    Article  Google Scholar 

  • De Soete, G., & Heiser, W.J. (1993). A latent class unfolding model for analyzing single stimulus preference ratings.Psychometrika, 58, 545–565.

    Google Scholar 

  • Diaconis, P. (1982).Group Theory in Statistics. Harvard University Lecture Notes.

  • Diaconis, P. (1988).Group Representations in Probability and Statistics. Hayward, CA: Institute of Mathematical Statistics.

    Google Scholar 

  • Dijksterhuis, E.J. (1987).Archimedes. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Embretson, S.E. (1984). A general multicomponent latent trait model for response processes.Psychometrika, 49, 175–186.

    Google Scholar 

  • Escher, B.G. (1934).De Methodes der Grafische Voorstelling [Methods of Graphical Representation]. Amsterdam: Maatschappij voor Goede en Goedkope Lectuur.

    Google Scholar 

  • Feigin, P.D., & Cohen, A. (1978). On a model for concordance between judges.Journal of the Royal Statistical Society, Series B,40, 203–213.

    Google Scholar 

  • Fienberg, S.E. (1968). The geometry of anr ×c contingency table.The Annals of Mathematical Statistics, 39, 1186–1190.

    Google Scholar 

  • Fienberg, S.E. (1970). An iterative procedure for estimation in contingency tables.The Annals of Mathematical Statistics, 41, 907–917.

    Google Scholar 

  • Fienberg, S.E., & Gilbert, J.P. (1970). The geometry of a two by two contingency table.Journal of the American Statistical Association, 65, 694–701.

    Google Scholar 

  • Fienberg, S.E., & Holland, P.W. (1973). Simultaneous estimation of multinomial cell probabilities.Journal of the American Statistical Association, 68, 683–691.

    Google Scholar 

  • Fienberg, S.E., & Larntz, K. (1976). Loglinear representation for paired and multiple comparison models.Biometrika, 63, 245–254.

    Google Scholar 

  • Fischer, G.H. (1973). Linear logistic test model as an instrument in educational research.Acta Psychologica, 37, 359–374.

    Article  Google Scholar 

  • Fligner, M.A., & Verducci, J.S. (1986). Distance based ranking models.Journal of the Royal Statistical Society, Series B,48, 359–369.

    Google Scholar 

  • Fligner, M.A., & Verducci, J.S. (1988). Multistage ranking models.Journal of the American Statistical Association, 83, 892–901.

    Google Scholar 

  • Fligner, M.A., & Verducci, J.S. (Eds.) (1993).Probability Models and Statistical Analyses for Ranking Data. New York; Springer Verlag.

    Google Scholar 

  • Galton, F. (1888). Co-relations and their measurement, chiefly from anthropometric data.Proceedings of the Royal Society of London, 45, 135–145.

    Google Scholar 

  • Gibbs, J.W. (1877). On the equilibrium of heterogeneous substances.Transactions of the Connecticut Academy, III, 108–248.

    Google Scholar 

  • Gifi, A. (1990).Nonlinear Multivariate Analysis. New York: Wiley.

    Google Scholar 

  • Goodman, L.A. (1985). The analysis of cross-classified data having ordered and/or unordered categories: Association models, correlation models, and asymmetry models for contingency tables with or without missing entries.Annals of Statistics, 13, 10–69.

    Google Scholar 

  • Greenacre, M.J. (1988). Clustering the rows and columns of a contingency table.Journal of Classification, 5, 39–51.

    Article  Google Scholar 

  • Greenacre, M.J. (1993). Biplots in correspondence analysis.Journal of Applied Statistics, 20, 251–269.

    Google Scholar 

  • Hastie, T., Tibshirani, R., & Friedman, J.H. (2001).The Elements of Statistical Learning. New York: Springer Verlag.

    Google Scholar 

  • Heath, T.L. (1925). Introduction. In: Euclid,The Thirteen Books of the Elements. New York: Dover (unabridged republication of the second edition, 1956).

    Google Scholar 

  • Heiser, W.J. (1981).Unfolding Analysis of Proximity Data. Unpublished Ph.D. Thesis, Leiden University.

  • Heiser, W.J. (1989). Order invariant unfolding analysis under smoothness restrictions. In G. De Soete, H. Feger, & K.C. Klauer (Eds.),New Developments in Psychological Choice Modeling (pp. 3–31). Amsterdam: North-Holland.

    Google Scholar 

  • Heiser, W.J. (2001). Correspondence analysis. In N.J. Smelser & P.B. Baltes (Eds.),International Encyclopedia of the Social and Behavioral Sciences (pp. 2820–2824). Oxford: Pergamon.

    Google Scholar 

  • Heiser, W.J. (2003a). Trust in relations.Measurement: Interdisciplinary Research and Perspectives, 1, 264–269.

    Google Scholar 

  • Heiser, W.J. (2003b).Interpretation of Between-Set Distances in Correspondence Analysis. Paper presented at the DI-MACS Workshop on Algorithms for Multidimensional Scaling, II. Tallahassee, Florida, USA, June 11–12, 2003.

  • Heiser, W.J., & Busing, F.M.T.A. (2004). Multidimensional scaling and unfolding of symmetric and asymmetric proximity relations. In D. Kaplan (Ed.),The SAGE Handbook of Quantitative Methodology for the Social Sciences (pp. 25–48). Thousand Oaks, CA: Sage.

    Google Scholar 

  • Heiser, W.J., & Meulman, J.J. (1983). Analyzing rectangular tables by joint and constrained MDS.Journal of Econometrics, 22, 139–167.

    Article  Google Scholar 

  • Ihm, P., & Van Groenewoud, H. (1975). A multivariate ordering of vegetation data based on Gaussian type gradient response curves.Journal of Ecology, 63, 767–778.

    Google Scholar 

  • Israëls, A. (1987).Eigenvalue Techniques for Qualitative Data. Leiden: DSWO Press.

    Google Scholar 

  • Johnson, M., & Junker, B.W. (2003). Using data augmentation and Markov chain Monte Carlo for the estimation of unfolding response models.Journal of Educational and Behavioral Statistics, 28, 195–230.

    Google Scholar 

  • Kelderman, H., & Rijkes, C.P.M. (1994). Loglinear multidimensional IRT models for polytomously scored items.Psychometrika, 59, 149–176.

    Article  Google Scholar 

  • Kendall, M.G. (1948).Rank Correlation Methods (first edition). London: Griffin.

    Google Scholar 

  • Kim, C., Rangaswamy, A., & DeSarbo, W.S. (1999). A quasi-metric approach to multidimensional unfolding for reducing the occurrence of degenerate solutions.Multivariate Behavioral Research, 34, 134–180.

    Article  Google Scholar 

  • Kruskal, J.B., & Carroll, J.D. (1969). Geometric models and badness-of-fit functions. In P.R. Krishnaiah (Ed.),Multivariate Analysis, Vol II (pp. 639–671). New York: Academic Press.

    Google Scholar 

  • Kruskal, J.B., & Shepard, R.N. (1974). A nonmetric variety of linear factor analysis.Psychometrika, 39, 123–157.

    Article  Google Scholar 

  • Lebart, L. (1998). Correspondence analysis, discrimination, and neural networks. In C. Hayashi, N. Ohsumi, K. Yajima, Y. Tanaka, H.-H. Bock, & Y. Baba (Eds.),Data Science, Classification, and Related Methods (pp. 423–430). Tokyo: Springer.

    Google Scholar 

  • Lee, S.-Y., Poon, W.-Y., & Bentler, P.M. (1992). Structural equation models with continuous and polytomous variables.Psychometrika, 57, 89–105.

    Google Scholar 

  • Lewis, C. (1986). Test Theory and Psychometrika: The past twenty-five years.Psychometrika, 51, 11–22.

    Google Scholar 

  • Lovie, A.D. (1995). Who discovered Spearman's rank correlation?British Journal of Mathematical and Statistical Psychology, 48, 255–269.

    Google Scholar 

  • Luce, R.D. (1959).Individual Choice Behavior: A Theoretical Analysis. New York: Wiley.

    Google Scholar 

  • Magidson, J., & Vermunt, J.K. (2001). Latent class factor and cluster models, bi-plots, and related graphical displays.Sociological Methodology, 31, 223–274.

    Article  Google Scholar 

  • Mallows, C.L. (1957). Non-null ranking models: I.Biometrika, 44, 114–130.

    Google Scholar 

  • Marden J.I. (1995).Analyzing and Modeling Rank Data. London: Chapman & Hall.

    Google Scholar 

  • Maxwell, J.C. (1857). Experiments on colour, as perceived by the eye, with remarks on colour-blindness.Transactions of the Royal Society of Edinburgh, 21, 275–298.

    Google Scholar 

  • Maxwell, J.C. (1860). On the theory of compound colours, and the relations of the colours of the spectrum.Philosophical Transactions of the Royal Society of London, 150, 57–84.

    Google Scholar 

  • McFadden, D. (1974). Conditional logit analysis of qualitative choice behavior. In P. Zarembka (Ed.),Frontiers in Econometrics, pp. 105–142. New York: Academic Press.

    Google Scholar 

  • Meulman, J.J., & Heiser, W.J. (1998). Visual display of interaction in multiway contingency tables by use of homogeneity analysis: the 2×2×2×2 case. In J. Blasius & M. Greenacre (Eds.),Visualization of Categorical Data (pp. 277–296). New York: Academic Press.

    Google Scholar 

  • Meulman, J.J., Van der Kooij, A.J., & Heiser, W.J. (2004). Principal components analysis with nonlinear optimal scaling transformations for ordinal and nominal data. In D. Kaplan (Ed.),The SAGE Handbook of Quantitative Methodology for the Social Sciences (pp. 49–70). Thousand Oaks, CA: Sage.

    Google Scholar 

  • Michell, J. (1999).Measurement in Psychology: Critical History of a Methodological Concept. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Mirkin, B. (2001). Eleven ways to look at the chi-squared coefficient for contingency tables.The American Statistician, 55, 111–120.

    Article  Google Scholar 

  • Mirkin, B., Arabie, P., & Hubert, L.J. (1995). Additive two-mode clustering: The error-variance approach revisited.Journal of Classification, 12, 243–263.

    Google Scholar 

  • Nishisato, S. (1984). Forced classification: A simple application of a quantification technique.Psychometrika, 49, 25–36.

    Google Scholar 

  • Nishisato, S. (2004). Dual scaling. In D. Kaplan (Ed.),The SAGE Handbook of Quantitative Methodology for the Social Sciences, pp. 3–24. Thousand Oaks, CA: Sage.

    Google Scholar 

  • Pearson, K. (1896). Mathematical contributions to the theory of evolution—III: Regression, heredity, and panmixia.Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences, 187, 253–318.

    Google Scholar 

  • Pearson, K. (1900).The Grammar of Science (2nd Ed.). London: Adam and Charles Black.

    Google Scholar 

  • Plackett, R.L. (1975). The analysis of permutations.Applied Statistics, 24, 193–202.

    Google Scholar 

  • Post, W.J. (1992).Nonparametric Unfolding Models: A Latent Structure Approach. Leiden: DSWO Press.

    Google Scholar 

  • Rasch, G. (1966). An item analysis which takes individual differences into account.British Journal of Mathematical and Statistical Psychology, 19, 49–57.

    PubMed  Google Scholar 

  • Roberts, J.S., Donoghue, J.R., & Laughlin, J.E. (2000). A general item response theory model for unfolding unidimendional polytomous responses.Applied Psychological Measurement, 24, 3–32.

    Google Scholar 

  • Roberts, J.S., & Laughlin, J.E. (1996). A unidimensional item response model for unfolding responses from a graded disagree-agree response scale.Applied Psychological Measurement, 20, 231–255.

    Google Scholar 

  • Roskam, E.E.Ch.I. (1968).Metric Analysis of Ordinal Data in Psychology. Voorschoten: VAM Publ.

    Google Scholar 

  • Ross, J., & Cliff, N. (1964). A generalization of the interpoint distance model.Psychometrika, 29, 167–176.

    Google Scholar 

  • Schönemann, P.H. (1970). On metric multidimensional unfolding.Psychometrika, 35, 349–366.

    Google Scholar 

  • Schoute, P.H. (1911). Analytic treatment of the polytopes regularly derived from the regular polytopes.Verhandelingen der Koninklijke Akademie van Wetenschappen te Amsterdam (eerste sectie), 11(3), 1–82 (incl. separate plates with 12 figures and 3 tables).

    Google Scholar 

  • Slater, P. (1960). The analysis of personal preferences.British Journal of Statistical Psychology, 13, 119–135.

    Google Scholar 

  • Spearman, C.E. (1904a). The proof and measurement of association between two things.American Journal of Psychology, 15, 72–101.

    Google Scholar 

  • Spearman, C.E. (1904b). ‘General intelligence’ objectively determined and measured.American Journal of Psychology, 15, 201–293.

    Google Scholar 

  • Spearman, C.E. (1906). ‘Footrule’ for measuring correlation.British Journal of Psychology, 2, 89–108.

    Google Scholar 

  • Stein, S. (1999).Archimedes: What Did He Do Besides Cry Eureka? Washington, DC: The Mathematical Association of America.

    Google Scholar 

  • Stevens, S.S. (1951). Mathematics, measurement and psychophysics. In S.S. Stevens (Ed.),Handbook of Experimental Psychology (pp. 1–49). New York: Wiley.

    Google Scholar 

  • Takane, Y. (1987). Analysis of contingency tables by ideal point discriminant analysis.Psychometrika, 52, 493–513.

    Google Scholar 

  • Takane, Y. (1996). An item response model for multidimensional analysis of multiple-choice questionaire data.Behaviormetrika, 23, 153–167.

    Google Scholar 

  • Takane, Y. (1998). Visualisation in ideal point discriminant analysis. In J. Blasius & M. Greenacre (Eds.),Visualization of Categorical Data (pp. 441–459). New York: Academic Press.

    Google Scholar 

  • Takane, Y., Yanai, H., & Mayekawa, S. (1991). Relationships among several methods of linearly constrained correspondence analysis.Psychometrika, 56, 667–684.

    Google Scholar 

  • Ter Braak, C.J.F. (1986). Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis.Ecology, 67, 1167–1179.

    Google Scholar 

  • Thompson, G.L. (1993). Generalized permutation polytopes and exploratory graphical methods for ranked data.Annals of Statistics, 21, 1401–1430.

    Google Scholar 

  • Tucker, L.R. (1960). Intra-individual and inter-individual multidimensionality. In H. Gulliksen & S. Messick (Eds.),Psychological Scaling: Theory and Applications (pp. 155–167). New York: Wiley.

    Google Scholar 

  • Van de Geer, J.P. (1993).Multivariate Analysis of Categorical Data: Theory. Newbury Park, CA: Sage.

    Google Scholar 

  • Van der Ark, L.A., & Van der Heijden, P.G.M (1998). Graphical display of latent budget analysis and latent class analysis, with special reference to correspondence analysis. In J. Blasius & M. Greenacre (Eds.),Visualization of Categorical Data (pp. 489–508). New York: Academic Press.

    Google Scholar 

  • Van der Ark, L.A., Van der Heijden, P.G.M., & Sikkel, D. (1999). On the identifiability in the latent budget model.Journal of Classification, 16, 117–137.

    Article  Google Scholar 

  • Van Deun, K., Groenen, P.J.F., Heiser, W.J., Busing, F.M.T.A., & Delbeke, L. (2005). Interpreting degenerate solutions in unfolding by use of the vector model and the compensatory distance model.Psychometrika, 70, in press.

  • Van Deun, K., Heiser, W.J., & Delbeke, L. (2004). Multidimensional unfolding by nonmetric multidimensional scaling of Spearman distances in the extended permutation polytope (submitted ms.).

  • Van IJzendoorn, M.H., & Kroonenberg, P.M. (1988). Cross-cultural patterns of attachment: A meta-analysis of the strange situation.Child Development, 59, 147–156.

    Google Scholar 

  • Wickens, T.D. (1989).Multiway Contingency Tables Analysis for the Social Sciences. Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Williams, R.H., Zimmerman, D.W., Zumbo, B.D., & Ross, D. (2003). Charles Spearman: British behavioral scientist.Human Nature Review, 3, 114–118.

    Google Scholar 

  • Wilkinson, L. (1999).The Grammar of Graphics. New York: Springer Verlag.

    Google Scholar 

  • Young, F.W., Takane, Y., & De Leeuw, J. (1978). The principal components of mixed measurement level multivariate data: An alternating least squares method with optimal scaling features.Psychometrika, 43, 279–281.

    Google Scholar 

  • Yule, G.U. (1900). On the association of attributes in statistics.Philosophical Transactions of the Royal Society of London (A), 194, 257–319.

    Google Scholar 

  • Zhang, J. (2004). Binary choice, subset choice, random utility, and ranking: A unified perspective using the permutahedron.Journal of Mathematical Psychology, 48, 107–134.

    Google Scholar 

  • Ziegler, G.U. (1995).Lectures on Polytopes. New York: Springer Verlag.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willem J. Heiser.

Additional information

This paper is based on my Presidential Address delivered at the 69th Annual Meeting of the Psychometric Society, Pacific Grove, California, June 14–17, 2004. It was completed during a stay as Fellow of the Netherlands Institute for Advanced Study in the Humanities and Social Sciences (NIAS) in Wassenaar, The Netherlands.

I would like to thank Marike Polak, Frank Busing, Elise Dusseldorp, and Angela Jansen for their help in the data analyses and the preparation of the figures, and Laurence Frank for her assistance during the oral presentation. I am also very lucky to have a career-long personal coach, Jacqueline J. Meulman, with whom I share so many interests and perspectives.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heiser, W.J. Geometric representation of association between categories. Psychometrika 69, 513–545 (2004). https://doi.org/10.1007/BF02289854

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02289854

Key words

Navigation