Skip to main content
Log in

Intermediate phases in the basic solution preparation of alkaline earth phosphates

  • Original Papers
  • Published:
Calcified Tissue Research Aims and scope Submit manuscript

Abstract

The first solid to appear in the precipitation of calcium phosphates from basic solutions is structurally non-crystalline. The existence, however, of a solution-prepared, non-crystalline orthophosphate salt is not unique only to the calcium phosphate system. Non-crystalline magnesium phosphates and magnesium ammonium phosphates can also be prepared under comparable conditions, but unlike the calcium salt, which converts into hydroxyapatite, these latter compounds are apparently solution stable. Preparations of strontium and barium orthophosphates from basic solution do not yield non-crystalline intermediates. For strontium, the intermediate phase is Sr3(PO4)2·4H2O, whereas the barium precipitates immediately as a stable barium hydroxyapatite. The tristrontium phosphate, however, converts autocatalytically into strontium hydroxyapatite. The analogous stoichiometry and identical kinetic behavior of the strontium intermediate with that of the amorphous calcium phosphate suggest that the latter could be a tricalcium phosphate rather than a cryptocrystalline Ca-deficient hydroxyapatite. This supports the possibility that the non-crystalline phase in bone mineral may not be an apatite but instead a distinct and separate compound.

Résumé

Le premier solide qui se forme au cours de la précipitation des phosphates de calcium, à partir de solutions basiques, est non-cristallin au point de vue structural. L'existence d'une solution saline non-cristalline d'orthophosphate n'est, cependant, pas propre au système des phosphates de calcium. Des phosphates de magnésium et des phosphates de magnésium — ammonium non-cristallins peuvent également être préparés dans des conditions similaires: mais, contrairement au sel calcique, qui se transforme en hydroxyl-apatite, ces composés sont apparemment stable. Des solutions basiques d'orthophosphates de strontium et de baryum ne forment pas de produits intermédiaires non-cristallins. Pour le strontium, la phase intermédiaire est constituée par le Sr3(PO4)2·4H2O, alors que le phosphate de baryum se précipite immédiatement sous forme d'un hydroxyl-apatite de baryum stable. Le phosphate de tristrontium se transforme cependant par autocatalyse en hydroxylapatite de strontium. La stoïchiométrie similaire et le comportement cinétique identique du produit intermédiaire de strontium avec ceux du phosphate de calcium amorphe semblent indiquer que ce dernier est constitué par un phosphate tricalcique plutôt que par une hydroxyl-apatite crypto-cristalline, déficiente en calcium. Ces faits semblent confirmer la possibilité non-apatitique de la phase non-cristalline du minéral osseux. Il peut s'agir d'un composé séparé et distinct.

Zusammenfassung

Der erste feste Bestandteil, welcher beim Fällen von Calciumphosphat aus alkalischen Lösungen erscheint, ist strukturmäßig nicht-kristallin. Allerdings ist das Vorkommen eines nicht-kristallinen, aus einer Lösung hergestellten Orthophosphatsalzes nicht nur dem Calcium-phosphat-System eigen, können doch auch nicht-kristalline Magnesiumphosphate und Magnesiumammoniumphosphate unter ähnlichen Bedingungen gewonnen werden. Im Gegensatz zum Calciumsalz sind diese Verbindungen jedoch in Lösung anscheinend stabil. Alkalisch hergestellte Lösungen von Strontium- und Barium-Orthophosphaten ergeben keine nicht-kristalline Zwischenverbindungen. Für Strontium ist die intermediäre Phase Sr3(PO4)2·4H2O, während das Barium sogleich als Bariumhydroxyapatit ausfällt. Das Tristrontiumphosphat hingegen verwandelt sich autokatalytisch zu Strontiumhydroxyapatit.

Die ähnliche stöchiometrische Form und das identische kinetische Verhalten der Strontium-Zwischenverbindung mit jener des amorphen Calciumphosphates läßt den Schluß zu, daß das Calciumphosphat eher ein Tricalciumphosphat als ein kryptokristallines, calciumarmes Hydroxyapatit sein könnte. Diese Annahme erhärtet die These, wonach die nichtkristalline Phase im Knochenmineral kein Apatit, sondern eine bestimmte, eigenständige Verbindung wäre.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bachra, B. N., O. R. Trautz, andS. L. Simon: Precipitation of calcium carbonates and phosphates. III. The effect of magnesium and fluoride ions on the spontaneous precipitation of calcium carbonates and phosphates. Arch. oral. Biol.10, 731–738 (1965).

    Article  PubMed  Google Scholar 

  • Collin, R. L.: Preparation and properties of two strontium orthophosphates — Sr3(PO4)2· 4H2O and Sr6H3(PO4)5·2H2O. J. Chem. Eng. Data9, 165–166 (1964).

    Article  Google Scholar 

  • Denk, G., andB. Hoppel: The precipitation of strontium and barium phosphates. Z. anorg. allg. Chem.310, 185–194 (1961).

    Article  Google Scholar 

  • Eanes, E. D., I. H. Gillessen, andA. S. Posner: Intermediate states in the precipitation of hydroxyapatite. Nature (Lond.)208, 365–367 (1965).

    Google Scholar 

  • ———: Mechanism of conversion of non-crystalline calcium phosphate to crystalline hydroxyapatite. In: Crystal growth (H. S. Peiser, ed.), p. 373–376. New York: Pergamon Press 1967.

    Google Scholar 

  • —,R. A. Harper, I. H. Gillessen, andA. S. Posner: An amorphous component in bone mineral. In: Fourth European Symposium on Calcified Tissues (P. J. Gaillard, A. Van den Hoff, andR. Steendijk, eds.), p. 24–26, Internat. Congr. Series No 120. Amsterdam: Excerpta Medica 1966.

    Google Scholar 

  • Eanes, E. D., andA. S. Posner: Kinetics and mechanism of conversion of non-crystalline calcium phosphate to crystalline hydroxyapatite. Trans. N.Y. Acad. Sci.28, 233–241 (1965).

    Google Scholar 

  • —,J. D. Termine, andA. S. Posner: Amorphous calcium phosphate in skeletal tissues. Clin. Orthop.53, 223–235 (1967).

    PubMed  Google Scholar 

  • Gee, A., andV. R. Deitz: Determination of phosphate by differential spectrophotometry. Anal. Chem.25, 1320–1324 (1953).

    Article  Google Scholar 

  • Harper, R. A., andA. S. Posner: Measurement of non-crystalline calcium phosphate in bone mineral. Proc. Soc. exp. Biol. Med.122, 137–142 (1966).

    PubMed  Google Scholar 

  • Kerr, G. T.: Chemistry of crystalline aluminosilicates. I. Factors affecting the formation of zeolite A. J. Phys. Chem.70, 1047–1050 (1966).

    Google Scholar 

  • Klement, R., andP. Dihn: Basic phosphates of bivalent metals. III. Barium hydroxyapatite. Z. anorg. allg. Chem.240, 31–39 (1938).

    Article  Google Scholar 

  • Mooney, R. W., andM. A. Aia: Alkaline earth phosphates. Chem. Rev.61, 433–462 (1961).

    Article  Google Scholar 

  • Prien, E. L., andC. Frondel: Studies in urolithiasis. I. The composition of urinary calculi. J. Urol. (Baltimore)57, 949–991 (1947).

    Google Scholar 

  • Ropp, R. C., M. A. Aia, C. W. W. Hoffman, T. J. Veleker, andR. W. Mooney: X-ray powder diffraction patterns of strontium phosphates. Anal. Chem.31, 1163–1166 (1959).

    Article  Google Scholar 

  • Termine, J. D., andA. S. Posner: Amorphous/Chrystalline interrelationships in bone mineral. Calc. Tiss. Res.1, 8–23 (1967).

    Article  Google Scholar 

  • Woodward, H. Q.: The elementary composition of human cortical bone. Hlth Phys.8, 513–517 (1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work supported in part by PHS Grant DE-09145 from the National Institute of Dental Research, USA. Publication Number 44 from The Laboratory of Ultrastructural Biochemistry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eanes, E.D., Posner, A.S. Intermediate phases in the basic solution preparation of alkaline earth phosphates. Calc. Tis Res. 2, 38–48 (1968). https://doi.org/10.1007/BF02279192

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02279192

Key words

Navigation