Skip to main content
Log in

Amorphous/crystalline interrelationships in bone mineral

  • Original Papers
  • Published:
Calcified Tissue Research Aims and scope Submit manuscript

Abstract

Amorphous calcium phosphate was found to be a major mineral component of skeletal tissue by X-ray diffraction techniques. This non-crystalline bone mineral phase can be converted into crystalline apatitein vitro upon exposure to water for a prolonged period of time. The amorphous calcium phosphate content of whole rat femur, tibia-fibula and calvarium decreases as the crystalline apatite content of these bones increases with advancing age. In addition, hypophysectomized whole rat femora contain more amorphous bone mineral than do normal controls. No significant differences in amorphous/crystalline bone mineral composition exist between control and denervated whole rat femora during disuse osteoporosis. However, rachitic chick bone contains more amorphous calcium phosphate than does normal bone tissue, regardless of the manner in which the disease state is reached. Moreover, alterations in chick bone lipid and mucopolysaccharide content coincide with corresponding alterations in the amorphous/crystalline mineral content of the tissue. It is suggested that amorphous calcium phosphate is the first mineral deposited during the calcification process and that the amorphous bone mineral fraction can act as a metabolically active, metastable precursor of crystalline bone apatite. It is further suggested that the amorphous calcium phosphate fraction of bone mineral may also exist in a stabilized form.

Résumé

L'analyse de diffraction par rayons X a montré que le phosphate de calcium amorphe est un des principaux constituants du squelette. Cette phase solide, non cristallisée de l'os peut se transformer en apatite cristalline in vitro après avoir été en contact avec de l'eau pendant une période suffisamment longue. Chez le rat, la teneur en phosphate de calcium amorphe des fémurs, tibias, péronés et des calottes crâniennes décroît, alors que la teneur en apatite cristalline de ces os croît, avec l'âge. De plus. les fémurs de rats hypophysectomisés contiennent une plus grande proportion de minéral osseux sous forme amorphe que ceux de témoins normaux. En ce qui concerne la proportion de minéral amorphe et cristallin dans l'ostéoporose d'immobilisation, on n'observe pas de différence significative entre des fémurs dénervés et des os témoins. Cependant, l'os de poulets rachitiques contient plus de phosphate de calcium amorphe que le tissu osseux de poulets sains, quelle que soit la manière dont on a provoqué le rachitisme. De plus, des modification de la teneur de l'os de poulet en lipides et en mucopolysaccharides correspondent à des modifications du rapport entre minéral amorphe et cristallin de l'os. Nous suggérons que le phosphate de calcium amorphe est la première forme minérale déposée au cours de la calcification et que la fraction amorphe est un précurseur métaboliquement actif et métastable de l'apatite cristalline: Il semble d'autre part que le phosphate de calcium amorphe peut également exister sous une forme stable.

Zusammenfassung

Das amorphe Calciumphosphat wurde mittels Röntgenstrahlendiffraktionsmethoden als eine der wichtigsten Komponenten des Knochengewebes erkannt. Dieser nicht kristallisierte Teil des Knochenminerals kann in vitro durch Wassereinwirkung während längerer Zeit in kristallines Apatit umgewandelt werden. Bei Ratten nimmt der Gehalt an amorphem Calciumphosphat der ganzen Femora, Tibia, Fibula und Calvaria mit zunehmendem Alter ab, während der Gehalt an kristallinem Apatit steigt. Dazu enthalten die Femora von hypophysektomierten Ratten mehr amorphes Knochenmineral als die von normalen Tieren. Es besteht kein signifikanter Unterschied im relativen Gehalt von amorphem und kristallinem Knochenmineral zwischen Kontroll- und denervierten Rattenfemora bei Immobilisationsosteoporose. Jedoch enthalten Knochen von rachitischen Hühnern, ungeachtet auf welche Art die Krankheit hervorgerufen wurde, mehr amorphes Calciumphosphat als normales Knochengewebe. Ferner stimmen die Veränderungen des Lipids- und Mucopolysaccharidgehaltes der Hühnerknochen mit entsprechenden Veränderungen im Gehalt an amorphem und kristallinem Mineral des Gewebes überein. Es wird vorgeschlagen, daß amorphes Calciumphosphat das erste Mineral ist, welches während des Verkalkungsprozesses abgelagert wird, und daß dieser Anteil an amorphem Knochenmineral als ein metabolisch aktiver, metastabiler Vorgänger des kristallinen Knochenapatites wirken kann. Dieser amorphe Calciumphosphatanteil des Knochenminerals könnte auch in einer stabilen Form vorkommen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, L. E., andH. P. Klug: Basic aspects of x-ray absorption in quantitative diffraction analysis of powder mixtures. Analyt. Chem.20, 886–889 (1948).

    Google Scholar 

  • Bachra, B. N., O. R. Trautz, andS. L. Simon: Precipitation of calcium carbonates and phosphates. I. Spontaneous precipitation of calcium carbonates and phosphates under physiological conditions. Arch. Biochem. Biophys.103, 124–138 (1963).

    PubMed  Google Scholar 

  • ———: Precipitation of calcium carbonates and phosphates. III. The effect of magnesium and fluoride ions on the spontaneous precipitation of calcium carbonates and phosphates. Arch. oral Biol.10, 731–738 (1965).

    PubMed  Google Scholar 

  • Burley, R. W.: Transphosphorylation of adenosine di- and tri-phosphates in the presence of calcium phosphate precipitates. Nature (Lond.)208, 683–684 (1965).

    Google Scholar 

  • Eanes, E. D.: Personal communication (1966).

  • —,I. H. Gillessen, andA. S. Posner: Intermediate states in the precipitation of hydroxyapatite. Nature (Lond.)208, 365–367 (1965).

    Google Scholar 

  • —, andA. S. Posner: Kinetics and mechanism of conversion of non-crystalline calcium phosphate to crystalline hydroxyapatite. Trans. N. Y. Acad. Sci.28, 233–241 (1965).

    Google Scholar 

  • Fitton-Jackson, S., andJ. T. Randall: In: Bone structure and metabolism (G. E. W. Wolstenholme andC. M. O'Connor, eds.); Fibrogenesis and the formation of matrix in developing bone, p. 47–64. London: J. & A. Churchill, Ltd. 1956.

    Google Scholar 

  • Fleisch, H.: Role of nucleation and inhibition in calcification. Clin. Orthop.32, 170–180 (1964).

    PubMed  Google Scholar 

  • —,D. Schibler, J. Maerki, andI. Frossard: Inhibition of aortic calcification by means of pyrophosphate and polyphosphates. Nature (Lond.)208, 1300–1301 (1965).

    Google Scholar 

  • Greenawalt, J. W., C. S. Rossi, andA. L. Lehninger: Effect of active accumulation of calcium and phosphate ions on the structure of rat liver mitochondria. J. Cell Biol.21, 21–38 (1964).

    Google Scholar 

  • Harper, R. A., andA. S. Posner: Measurement of non-crystalline calcium phosphate in bone mineral. Proc. Soc. exp. Biol. (N.Y.)122, 137–142 (1966).

    Google Scholar 

  • Höhling, H. J., H. Theman, andJ. Vahl: In: Third european symposium on calcified tissues (H. Fleisch, H. J. J. Blackwood, andM. Owen, eds.); Collagen and apatite in hard tissues and pathological formations from a crystal chemical point of view, p. 146–151. Berlin-Heidelberg-New York: Springer 1966.

    Google Scholar 

  • Kharmosh, O., andP. D. Saville: The effect of motor denervation on muscle and bone in the rabbit's hind limb. Acta orthop. scand.36, 361–370 (1965).

    PubMed  Google Scholar 

  • Klug, H. G., andL. E. Alexander: X-ray diffraction procedures, p. 92. New York: J. P. Wiley & Sons 1954.

    Google Scholar 

  • Leach, R. M. Jr., andA. M. Muenster: Studies on the role of manganese in bone formation. I. Effect upon the mucopolysaccharide content of chick bone. J. Nutr.78, 51–57 (1962).

    PubMed  Google Scholar 

  • —, andM. C. Nesheim: Nutritional, genetic and morphological studies of an abnormal cartilage formation in young chicks. J. Nutr.86, 236–244 (1965).

    PubMed  Google Scholar 

  • Molnar, Z.: Development of the parietal bone of young mice. I. Crystals of bone mineral in frozen-dried preparations. J. Ultrastruct. Res.3, 39–45 (1959).

    PubMed  Google Scholar 

  • Peachey, L. D.: Electron microscopic observations on the accumulation of divalent cations in intramitochondrial granules. J. Cell Biol.20, 95–112 (1964).

    PubMed  Google Scholar 

  • Posner, A. S., A. D. Eanes, R. A. Harper, andI. Zipkin: X-ray diffraction analysis of the effect of fluoride on human bone apatite. Arch. oral Biol.8, 549–570 (1963).

    Google Scholar 

  • —,R. A. Harper, S. A. Muller, andJ. Menczel: Age changes in the crystal chemistry of bone apatite. Ann. N.Y. Acad. Sci.131, 737–742 (1965).

    PubMed  Google Scholar 

  • Prins, J. A.: In: Physics of non-crystalline solids (J. A. Prins, ed.); Structure of non-crystalline solids, p. 1–11. New York: Interscience 1965.

    Google Scholar 

  • Robinson, R. A., andM. L. Watson: Crystal-collagen relationships in bone as observed in the electron microscope. III. Crystals and collagen morphology as a function of age. Ann. N.Y. Acad. Sci.60, 596–628 (1955).

    PubMed  Google Scholar 

  • Termine, J. D.: Amorphous calcium phosphate: the second mineral of bone. Ph. D. Thesis, Cornell University 1966.

  • —, andA. S. Posner: Infrared analysis of rat bone: age dependency of amorphous and crystalline mineral fractions. Science153, 1523–1525 (1967).

    Google Scholar 

  • Termine, J. D., R. E. Wuthier, andA. S. Posner: Nature of the mineral phase during endochondral and periosteal bone formation. In preparation (1966).

  • Watson, M. L., andR. A. Robinson: Collagen-crystal relationships in bone as seen in the electron microscope. II. Electron microscope study of basic calcium phosphate crystals. Amer. J. Anat.93, 25–60 (1953).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported in part by PHS Grant DE-10945 from the National Institute of Dental Research, U.S.A. Publication No. 24 from the Laboratory of Ultrastructural Biochemistry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Termine, J.D., Posner, A.S. Amorphous/crystalline interrelationships in bone mineral. Calc. Tis Res. 1, 8–23 (1967). https://doi.org/10.1007/BF02008070

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02008070

Keywords

Navigation