Skip to main content
Log in

The apparent autoxidation rate of catechols in dopamine-rich regions of human brains increases with the degree of depigmentation of substantia nigra

  • Published:
Journal of Neural Transmission - Parkinson's Disease and Dementia Section

Summary

The concentrations of the 5-S-cysteinyl adducts of dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC) and 3,4-dihydroxyphenylalanine (DOPA) and the levels of noradrenaline (NA), DA, DOPAC and DOPA were determined in the putamen (PUT), caudate nucleus (CN) and substantia nigra (SN) of human post mortem brains with or without depigmentation and degeneration of the SN. The levels of DA, DOPAC and DOPA decreased with the degree of depigmentation and degeneration in the three brain regions while NA levels only decreased in SN and PUT. In general, the concentrations of the 5-S-cysteinyl adducts did not differ, but the ratios of 5-S-cysteinyl-DA/DA, 5-S-cysteinyl-DOPAC/DOPAC and 5-S-cysteinyl-DOPA/DOPA were higher in patients with a more depigmentated and degenerated SN, except for the 5-S-cysteinyl-DA/DA ratio in the PUT. Higher ratios were also found in the cell body areas compared to the neuron terminal areas.

Thus depigmentation and degeneration of dopaminergic SN neurons, seem to be correlated to enhanced rates of autoxidation, possibly due to an impaired antioxidant capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrup G, Falck B, Jacobsson S, Rorsman H, Rosengren AM, Rosengren E (1974) 5-S-Cysteinyldopa in melanomas of caucasians. Acta Derm Venereol (Stockholm) 54: 21–23

    Google Scholar 

  • Agrup G, Edholm L-E, Rorsman H, Rosengren E (1983) Diastereomers of 5-S-cysteinyl-DOPA. Acta Derm Venereol (Stockholm) 63: 59–61

    Google Scholar 

  • Ambani LM, Melvin H, van Woert MH, Murphy S (1975) Brain peroxidase and catalase in Parkinson's disease. Arch Neurol 32: 114–118

    PubMed  Google Scholar 

  • Anton AH, Sayre DF (1962) A study of the factors affecting the aluminium oxidetrihydroxyindole procedure for the analysis of catecholamines. J Pharmacol Exp Ther 138: 360–375

    PubMed  Google Scholar 

  • Cohen G (1983) The pathobiology of Parkinson's disease: biochemical aspects of dopamine neuron senescence. J Neural Transm 19 [Suppl]: 89–103

    PubMed  Google Scholar 

  • Dahlqvist I, Falck B, Jacobsson S, Rorsman H, Rosengren AM, Rosengren E (1972) 5-S-Cysteinyldopa in the urine of melanoma patients. Communications from the Department of Anatomy, University of Lund, Sweden, No. 7

    Google Scholar 

  • Das KC, Abramson MB, Katzman R (1978) Neuronal pigments: spectroscopic characterization of human brain melanin. J Neurochem 30: 601–605

    PubMed  Google Scholar 

  • Dexter DT, Carter C, Agid F, Agid Y, Lees AJ, Jenner P, Mardsen CD (1986) Lipid peroxidation as cause of nigral cell death in Parkinson's disease. Lancet ii: 639–640

    Google Scholar 

  • Dexter DT, Wells FR, Agid F, Agid Y, Lees AJ, Jenner P, Mardsen CD (1987) Increased nigral iron content in post mortem parkinsonian brain. Lancet ii: 1219–1220

    Article  Google Scholar 

  • Fehling C, Hansson C, Poulsen J, Rorsman H, Rosengren E (1981) 5-S-Cysteinyldopa in ganglion stellatum. J Neural Transm 52: 251–257

    Article  PubMed  Google Scholar 

  • Fornstedt B, Rosengren E, Carlsson A (1986) Occurrence and distribution of 5-S-cysteinyl derivatives of dopamine, dopa and dopac in the brains of eight mammalian species. Neuropharmacology 25: 451–454

    Article  PubMed  Google Scholar 

  • Fornstedt B, Carlsson A (1989) A marked rise in 5-S-cysteinyl-dopamine levels in guineapig striatum following reserpine treatment. J Neural Transm 76: 155–161

    Article  PubMed  Google Scholar 

  • Graham DG (1978) Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones. Mol Pharmacol 14: 633–643

    PubMed  Google Scholar 

  • Graham DG, Tiffany SM, Bell WRJr, Gutknecht WF (1978) Autoxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine, 6-hydroxydopamine and related compounds toward C 1300 neuroblastoma cells in vitro. Mol Pharmacol 14: 644–653

    PubMed  Google Scholar 

  • Ito S, Novellino E, Chiocarra F, Misuraca O, Prota G (1980) Co-polymerization of dopa and cysteinyldopa in melanogenesis in vitro. Experientia 36: 822–823

    Article  PubMed  Google Scholar 

  • Ito S, Fujita K, Yoshioka M, Sienko D, Nagatsu T (1986) Identification of 5-S- and 2-S-cysteinyldopamine and 5-C-glutathionyldopamine formed from dopamine by highperformance liquid chromatography with electrochemical detection. J Chromatogr 375: 134–140

    Google Scholar 

  • Kish SJ, Shannak K, Hornykiewicz O (1988) Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson's disease. Pathophysiologic and clinical implications. N Engl J Med 318: 876–880

    PubMed  Google Scholar 

  • Milliken GA, Johnson DE (1984) Analyses of messy data. Lifetime Learning Publications, Belmont, California, U.S.A.

    Google Scholar 

  • Moldéus P, Nordenskjöld M, Bolcsfoldi G, Eiche A, Haglund U, Lambert B (1983) Genetic toxicity of dopamine. Mutat Res 124: 9–24

    Article  PubMed  Google Scholar 

  • Nordgren L, Rorsman H, Rosengren A-M, Rosengren E (1971) Dopa and dopamine in the pigment of substantia nigra. Experientia 27: 1178–1179

    PubMed  Google Scholar 

  • Perry TL, Godin DV, Hansen S (1982) Parkinson's disease: a disorder due to nigral glutathione deficiency? Neurosci Lett 33: 305–310

    Article  PubMed  Google Scholar 

  • Prota G, Rorsman H, Rosengren AM, Rosengren E (1976) Pheaomelanic pigment from a human melanoma. Experientia 32: 970–971

    Article  PubMed  Google Scholar 

  • Riederer P, Sofic E, Rausch W-D, Schmidt B, Reynolds GP, Jellinger K, Youdim MBH (1989) Transition metals, ferritin, glutathion and ascorbic acid in parkinsonian brains. J Neurochem 52: 515–520

    PubMed  Google Scholar 

  • Rodgers AD, Curzon G (1975) Melanin formation by human brain in vitro. J Neurochem 24: 1123–1129

    PubMed  Google Scholar 

  • Rorsman H, Agrup G, Hansson C, Rosengren AM, Rosengren E (1979) Detection of pheomelanins. In: Klaus SN (ed) Pigment cell, vol 4. Karger, Basel, pp 243–253

    Google Scholar 

  • Rosengren E, Linder-Eliasson E, Carlsson A (1985) Detection of 5-S-cysteinyldopamine in human brain. J Neural Transm 63: 247–253

    PubMed  Google Scholar 

  • Scheulen M, Wollenberg P, Bolt HM, Kappus H, Remmer H (1975) Irreversible binding of dopa and dopamine metabolites to protein by rat liver microsomes. Biochem Biophys Res Commun 66: 1396–1400

    PubMed  Google Scholar 

  • Sealy R, Hyde J, Felix C, Menon IA, Prota G (1982) Eumelanins and pheomelanins: characterisation by electron spin resonance. Science 217: 545–547

    PubMed  Google Scholar 

  • Vogel CL, Dhru Dh, Rorsman H, Rosengren AM, Rosengren E (1974) Dopa and 5-S-cysteinyldopa in malignant melanoma in Ugandan Africans. Acta Derm Venereol (Stockholm) 54: 19–21

    Google Scholar 

  • Wick MM (1978) Dopamine: a novel antitumor agent active against B-16 melanoma in vivo. J Invest Derm 71: 163–164

    PubMed  Google Scholar 

  • Wick MM, Byers L, Frei E III (1977) L-Dopa: selective toxicity for melanoma cells in vitro. Science 197: 468–469

    PubMed  Google Scholar 

  • Wick MM (1980) Levodopa and dopamine analogs as DNA polymerase inhibitors and antitumor agents in human melanoma. Cancer Res 40: 1414–1418

    PubMed  Google Scholar 

  • Wiesel F-A, Sedvall G (1974) Post-mortal changes of dopamine and homovanillic acid levels in rat striatum as measured by mass fragmentography. Brain Res 65: 547–550

    PubMed  Google Scholar 

  • Van Woert MH, Prasad KN, Borg DC (1967) Spectroscopic studies of substantia nigra pigment in human subjects. J Neurochem 14: 707–716

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fornstedt, B., Brun, A., Rosengren, E. et al. The apparent autoxidation rate of catechols in dopamine-rich regions of human brains increases with the degree of depigmentation of substantia nigra. J Neural Transm Gen Sect 1, 279–295 (1989). https://doi.org/10.1007/BF02263482

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02263482

Keywords

Navigation