Skip to main content
Log in

Order determination in autoregressive modeling of diastolic heart sounds

  • Articles
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Previous studies demonstrated that spectral analysis of diastolic heart sounds may provide valuable information for the detection of coronary artery disease. Although parametric modeling methods were successfully used to achieve this goal, and showed considerable performance, the accuracy and precision of the analysis is strongly dependent on the model order selected. In order to investigate the effects of model order selection on the analysis, diastolic heart sounds recorded from both normal and diseased patients were analyzed using the AR modeling, which is computationally the most efficient parametric spectral analysis method. The model orders were determined by using four different model order selection criteria. The results showed that the four criteria yielded different orders for the same data set. On the other hand, different criteria showed different performance in different measurement conditions. Effect of arbitrary order selection was also discussed. As a result, an optimal AR model order that may be used for every case was determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dock, W., and Zonaraich, S., A diastolic murmur arising in a stenosed coronary artery,Amer. Med. 42:617, 1967.

    Article  Google Scholar 

  2. Cheng, T. O., Diagnostic murmur caused by coronary artery stenosis,Ann. Intern. Med. 72:543–546, 1970.

    Google Scholar 

  3. Sangster, J. F., Diagnostic murmur of coronary artery stenosis.Brit. Heart J. 35:840–844, 1973.

    Google Scholar 

  4. Khalifa, A. M. A., and Giddens, D. P., Characterization of post-stenotic flow disturbances.J. Biomech. 14:275–296, 1981.

    Article  Google Scholar 

  5. Kurtz, K. J., Dynamic vascular ausculation.Amer. J. Med. 76:1066–1074, 1984.

    Article  Google Scholar 

  6. Lees, R. S. and Myers, G. S., Noninvasive diagnosis of arterial disease.Adv. Intern. 23:475–509, 1983.

    Google Scholar 

  7. Semmlow, J. L., Welkowitz, W., Kostis, J. B., and Mackenzie, J. W., Coronary artery disease-correlates between diastolic auditory characteristics and coronary artery stenoses.IEEE Trans. Biomed. Eng. 30:136–139, 1983.

    Google Scholar 

  8. Akay M., Bauer, M., Semmlow, J. L., Welkowitz, W., and Kostis, J. B., AR modeling of diastolic heart sounds.Proc. IEEE Front. Med. New Orleans, LA, 172–175, 1988.

  9. Akay M., Semmlow, J. L., Welkowitz, W., and Kostis, J. B., Parametric analysis of diastolic heart sounds before and after angioplasty.Proc. IEEE Front. Med. Seattle, WA, 51–53, 1989.

  10. Akay, M., Semmlow, S. L., Welkowitz, W., Bauer, M. D., and Kostis, J. B., Detection of coronary occlusions using autoregressive modeling of diastolic heart sounds.IEEE Trans. Biomed. Eng. 37: 366–373, 1990.

    Article  Google Scholar 

  11. Semmlow, J. L., Akay, M., and Welkowitz, W., Noninvasive detection of CAD using parametric analysis methods.IEEE Eng. Med. Biol. 9:33–37, 1990.

    Article  Google Scholar 

  12. Akay, M., Welkowitz, W., Semmlow, J. L., and Kostis, J., Application of ARMA method to acoustic detection of coronary artery disease.Med. Biol. Eng. Comp. 29:365–372, 1991.

    Google Scholar 

  13. Kay, S. M., and Marple, S. L., Spectral analysis: a modern perspective.Proc. IEEE 69:1380–1419, 1981.

    Google Scholar 

  14. Paiss, O., and Inbar, G. F., Autoregressive modeling of surface EMG and its spectrum with application to fatigueIEEE Trans. Biomed. Eng. 34:761–771, 1987.

    Google Scholar 

  15. Iyer, V. K., Ramamoorthy, P. A., and Ploysongsang, Y., Autoregressive modeling of lung sounds: characterization of source and transmission.IEEE Trans. Biomed. Eng. 36:1133–1136, 1989.

    Article  Google Scholar 

  16. Ansourian, M. N., Dripps, J. H., Beattie, G. J., and Boddy, K., Autoregressive spectral estimation of fetal breathing movement.IEEE Trans. Biomed. Eng. 36:1076–1084, 1989.

    Article  Google Scholar 

  17. Güler, I., Kiymik, M. K., Kara, S., and Yüksel, M. E., Application of autoregressive analysis to 20 MHz pulsed Doppler data in real time.Int. J. Biomed. Comp. 31:247–256, 1992.

    Article  Google Scholar 

  18. Güler, N. F., Kiymik, M. K., and Güler, I., Comparison of FFT-and AR-based sonogram outputs of 20 MHz pulsed Doppler data in real time.Comp. Biol. Med. 25:383–391, 1995.

    Article  Google Scholar 

  19. Güler, N. F., Kiymik, M. K., and Güler, I., Autoregressive-based sonogram outputs of 20 MHz pulsed Doppler data.Med. Progress Tech. 21:105–110, 1995.

    Google Scholar 

  20. Akaike, H., A new look at the statistical model identification.IEEE Trans. Auto. Cont. 19:716–723, 1974.

    Article  Google Scholar 

  21. Ulrich, T. J., and Bishop, T. N., Maximum entropy spectral analysis and autoregressive decomposition.Rev. Geophys. Space Phys. 13:183–200, 1975.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Güler, I., Kiymik, M.K. & Güler, N.F. Order determination in autoregressive modeling of diastolic heart sounds. J Med Syst 20, 11–17 (1996). https://doi.org/10.1007/BF02260870

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02260870

Key Words

Navigation