Skip to main content
Log in

Pore formation by the sea anemone cytolysin equinatoxin II in red blood cells and model lipid membranes

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The interaction ofActinia equina equinatoxin II (EqT-II) with human red blood cells (HRBC) and with model lipid membranes was studied. It was found that HRBC hemolysis by EqT-II is the result of a colloid-osmotic shock caused by the opening of toxin-induced ionic pores. In fact, hemolysis can be prevented by osmotic protectants of adequate size. The functional radius of the lesion was estimated to be about 1.1 nm. EqT-II increased also the permeability of calcein-loaded lipid vesicles comprised of different phospholipids. The rate of permeabilization rised when sphingomyelin was introduced into the vesicles, but it was also a function of the pH of the medium, optimum activity being between pH 8 and 9; at pH 10 the toxin became markedly less potent. From the dose-dependence of the permeabilization it was inferred that EqT-II increases membrane permeability by forming oligomeric channels comprising several copies of the cytolysin monomer. The existence of such oligomers was directly demonstrated by chemical cross-linking. Addition of EqT-II to one side of a planar lipid membrane (PLM) increases the conductivity of the film in discrete steps of defined amplitude indicating the formation of cation-selective channels. The conductance of the channel is consistent with the estimated size of the lesion formed in HRBC. High pH and sphingomyelin promoted the interaction even in this system. Chemical modification of lysine residues or carboxyl groups of this protein changed the conductance, the ion selectivity and the current-voltage characteristic of the pore, suggesting that both these groups were present in its lumen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EqT-II:

Actinia equina equinatoxin II

SM:

sphingomyelin

PC:

phosphatidylcholine

PE:

phosphatidylethanolamine

POPC:

palmitoyl-oleoyl-phosphatidylcholine

SUV:

small unilamellar vesicles

HRBC:

human red blood cells

PLM:

planar lipid membranes

TLC:

thin layer chromatography

SDS:

sodium dodecyl sulfate

LDS:

lithium dodecyl sulfate

Tween-20:

polyoxyethylene sorbitan monolaurate

Brij-35:

polyoxyethylene(23)lauryl ether

Triton X-100:

octylphenoxy polyethoxy ethanol

LubrolPX:

polyethylenglycol(9)dodecyl ether

PLP:

pyridoxal-5′-phosphate

EDC:

1-ethyl-3-(3′-dimethylaminopropyl)-carbodiimide

DM5:

dimethyl suberimidate

PEG:

polyethyleneglycol

References

  1. Batista, U., Maček, P., Sedmak, B. 1990. The cytotoxic and cytolytic activity of equinatoxin II from the sea anemoneActinia equina.Cell Biol. Int. Rep. 14:1013–1024

    Google Scholar 

  2. Belmonte, G., Cescatti, L., Ferrari, B., Nicolussi, T., Ropele, M., Menestrina, G. 1987. Pore formation byStaphylococcus aureus alpha-toxin in lipid bilayers: dependence upon temperature and toxin concentration.Eur. Biophys. J. 14:349–358

    Google Scholar 

  3. Benz, R. 1988. Structure and function of porins from gramnegative bacteria.Annu. Rev. Microbiol. 42:359–393

    Google Scholar 

  4. Bernheimer, A. W., Rudy, B. 1986. Interactions between membranes and cytolytic peptides.Biochim. Biophys. Acta 864:123–141

    Google Scholar 

  5. Bhakdi, S., Muhly, M., Fussle, R. 1984. Correlation between toxin binding and hemolytic activity in membrane damage by Staphylococcal alpha-toxin.Infect. Immun. 46:318–323

    Google Scholar 

  6. Boheim, G., Kolb, H. A. 1978. Analysis of the multi-pore system of alamethicin in a lipid membrane. I. Voltage jump current-relaxation measurements.J. Membrane Biol. 39:99–150

    Google Scholar 

  7. Cescatti, L., Pederzolli, C., Menestrina, G. 1991. Modification of lysine residues ofS. aureus α-toxin: effects on its channel forming properties.J. Membrane Biol. 119:53–64

    Google Scholar 

  8. Davies, G. E., Stark, G. R. 1970. Use of dimethyl suberimidate, a cross-linking reagent, in studying the subunit of oligomeric proteins.Proc. Natl. Acad. Sci. USA 66:651–656

    Google Scholar 

  9. Downer, N. W. 1985. Cross-linking of dark-adapted frog photoreceptor disk membranes. Evidence for monomeric rhodopsin.Biophys. J. 47:285–293

    Google Scholar 

  10. Doyle, J. W., Kern, W. R., Villalonga, R. A. 1989. Interfacial activity of an ion channel-generating cytolysin from the sea anemoneStichodactyla heliantus.Toxicon 27:465–471

    Google Scholar 

  11. Fleer, E. A., Verheij, H. M., de Haas, G. H. 1981. Modification of carboxylate groups in bovine pancreatic phospholipase A2. Identification of aspartate 49 as Ca++ binding ligand.Eur. J. Biochem. 113:283–288

    Google Scholar 

  12. Forti, S., Menestrina, G. 1989. Staphylococcal alpha-toxin increases the permeability of lipid vesicles by a cholesterol and pH dependent assembly of oligomeric channels.Eur. J. Biochem. 181:767–773

    Google Scholar 

  13. Freer, J.H., Arbuthnott, J. P., Bilcliffe, B. 1973. Effects of staphylococcal alpha-toxin on the structure of erythrocytes membranes.J. Gen. Microbiol. 75:321–332

    Google Scholar 

  14. Füssle, R., Bhakdi, S., Sziegoleit, A., Tranum-Jensen, J., Kranz, T., Wellensiek, H. J. 1981. On the mechanism of membrane damage byStaphylococcus aureus alpha-toxin.J. Cell Biol. 91:83–94

    Google Scholar 

  15. Garland, W. J., Buckley, J. T. 1988. The cytolytic toxin aerolysin must aggregate to disrupt erythrocytes, and aggregation is stimulated by human glycophorin.Infect. Immun. 56:1249–1253

    Google Scholar 

  16. Ginsberg, H., Stein, W.D. 1987. Biophysical analysis of novel transport pathways induced in red blood cell membranes.J. Membrane Biol. 96:1–10

    Google Scholar 

  17. Green, M.J., Buckley, J.T. 1990. Site-directed mutagenesis of the hole-forming toxin aerolysin: studies on the roles of histidines in receptor binding and oligomerization of the monomer.Biochemistry 29:2177–2180

    Google Scholar 

  18. Harvey, H. L. 1990. Cytolytic toxins.In: Handbook of Toxinology. W.T. Shier, D. Mebs, editors, pp. 1–66. Marcel Dekker, New York

    Google Scholar 

  19. Hille, B. 1984. Ionic Channels of Excitable Membranes. Sinauer, Sunderland, MA

    Google Scholar 

  20. Ho, C.L., Ko, J.L., Lue, H.M., Lee, C.Y., Ferlan, I. 1987. Effect of equinatoxin on the guinea-pig atrium.Toxicon 25:659–664

    Google Scholar 

  21. Hollecker, M., Creighton, T. E. 1980. Counting integral numbers of amino groups per polypeptide chain.FEBS Lett. 119:187–189

    Google Scholar 

  22. Johnston, P.A., Südhof, T.C. 1990. The multisubunit structure of synaptophysin. Relationship between disulfide bonding and homo-oligomerization.J. Biol. Chem. 265:8869–8873

    Google Scholar 

  23. Kem, W.R. 1988. Sea anemone toxin: Structure and action.In: The Biology of Nematocysts. D.A. Hessinger, H.M. Lenhoff, editors. pp. 375–405. Academic, San Diego

    Google Scholar 

  24. Kuga, S. 1981. Pore size distribution analysis of gel substances by size exclusion chromatography.J. Chromatography 206:449–461

    Google Scholar 

  25. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature 227:680–685

    Google Scholar 

  26. Lafranconi, W.M., Ferlan, I., Russell, F.E., Huxtable, R.J. 1984. The action of equinatoxin, a peptide from the venom of the sea anemone,Actinia equina, on isolated lung.Toxicon 22:347–352

    Google Scholar 

  27. Langosch, D., Thomas, L., Betz, H. 1988. Conserved quaternary structure of ligand-gated ion channels: the postsynaptic glycine receptor is a pentamer.Proc. Natl. Acad. Sci. USA 85:7394–7398

    Google Scholar 

  28. Latorre, R., Alvarez, O. 1981. Voltage dependent channels in planar lipid bilayer membranes.Physiol. Rev. 61:77–150

    Google Scholar 

  29. Lee, C.Y. 1989. Cardiovascular effects of equinatoxin, a basic protein from the sea anemone,Actinia equina.In: Biosignalling in Cardiac and Vascular Systems. M. Fujiwara, S. Narumiya, S. Miwa, editors. pp. 380–384. Pergamon, Oxford

    Google Scholar 

  30. Lindemann, B. 1982. Dependence of ion flow through channels on the density of fixed charges at the channel opening; Voltage control of inverse titration curve.Biophys. J. 39:15–22

    Google Scholar 

  31. Liu, J., Blumenthal, K.M. 1988. Functional interaction betweenCerebratulus lacteus cytolysin A-III and phospholipase A2. Implication for the mechanism of cytolysis.J. Biol. Chem. 263:6619–6624

    Google Scholar 

  32. Maček P., Lebez, D. 1981. Kinetics of hemolysis induced by equinatoxin, a cytolitic toxin from the sea anemoneActinia equina. Effect of some ions and pHToxicon 19:233–240

    Google Scholar 

  33. Maček, P., Lebez, D. 1988. Isolation and characterization of three lethal and hemolytic toxins from the sea anemoneActinia equina L.Toxicon 26:441–451

    Google Scholar 

  34. Menestrina, G. 1988.Escherichia coli hemolysin permeabilizes small unilamellar vesicles loaded with calcein by a single hit mechanism.FEBS Lett. 232:217–220

    Google Scholar 

  35. Menestrina, G. 1991. Electrophysiological methods for the study of toxin-membrane interaction.In: Sourcebook of Bacterial Protein Toxins. J.E. Alouf, J.H. Freer, editors. pp. 215–241. Academic, London.

    Google Scholar 

  36. Menestrina, G. 1991. Pore-forming cytolysins studied with planar lipid membranes.Period Biol. 93:201–206.

    Google Scholar 

  37. Menestrina, G., Antolini, R. 1982. The dependence of the conductance of the hemocyanin channel on applied potential and ionic concentration with mono and divalent cations.Biochim. Biophys. Acta 688:673–684

    Google Scholar 

  38. Michaels, D.W. 1979. Membrane damage by a toxin from the sea anemoneStoichactis helianthus. 1. Formation of transmembrane channels in lipid bilayers.Biochim. Biophys. Acta 555:67–78

    Google Scholar 

  39. Nikaido, H., Rosenberg, E.Y. 1983. Porin channels inEscherichia coli: studies with liposomes reconstituted from purified proteins.J Bacteriol. 153:241–252

    Google Scholar 

  40. Nikaido, H., Rosenberg, Y. 1981. Effect of solute size on diffusion rates through the transmembrane pores of outer membrane ofEscherichia coli.J. Gen. Physiol. 77:121–135.

    Google Scholar 

  41. Nishigori, H., Toft, D. 1979. Modification of avian progesteron receptor by pyridoxal-5′-phosphate.J. Biol. Chem. 254:9155–9161

    Google Scholar 

  42. Norton, R.S. 1991. Structure and structure-function relationship of sea anemone proteins that interact with the sodium channel.Toxicon 29:1051–1084

    Google Scholar 

  43. Peach, C., Tolbert, N.E. 1978. Active site studies of ribulose1,5-bisphosphate carboxylase/oxygenase with pyridoxal-5′phosphate.J. Biol. Chem. 253:7864–7873

    Google Scholar 

  44. Pederzolli, C., Cescatti, L., Menestrina, G. 1991. Chemical modification ofStaphylococcus aureus α-toxin by diethylpyrocarbonate: role of histidines in its membrane damaging properties.J. Membrane Biol. 119:41–52

    Google Scholar 

  45. Renkin, E.M. 1954. Filtration, diffusion, and molecular sieving through porous cellulose membranes.J. Gen. Physiol. 38:225–243

    Google Scholar 

  46. Rizzo, V., Stankowski, S., Schwarz, G. 1987. Alamethicin incorporation in lipid bilayers: a thermodynamic study.Biochemistry 26:2751–2759

    Google Scholar 

  47. Rosenbusch, J.P. 1990. Structural and functional properties of porin channels inE. coli outer membranes.Experientia 46:167–173

    Google Scholar 

  48. Schultz, S.G. 1980. Basic principles of membrane transport. Cambridge University, New York

    Google Scholar 

  49. Schultz, S.G., Solomon, A.K. 1961. Determination of the effective hydrodynamic radii of small molecules by viscometry.J. Gen. Physiol. 44:1189–1199

    Google Scholar 

  50. Teng, C.M., Lee, L.G., Lee, C.Y., Ferlan, I. 1988. Platelet aggregation induced by equinatoxin.Thromb. Res. 52:401–411

    Google Scholar 

  51. Thomas, L., Hartung, K., Langosch, D., Rehm, H., Bamberg, E., Franke, W.W., Betz, H. 1988. Identification of synaptophysin as a hexameric channel protein of the synaptic vesicle membrane.Science 242:1050–1052

    Google Scholar 

  52. Turk, T., Maček, P. 1986. Effect of different membrane lipids on the hemolytic activity of equinatoxin II fromActinia equina.Period. Biol. 88:216–217

    Google Scholar 

  53. Turk, T., Maček, P. 1992. The role of lysine, histidine and carboxyl residues in biological activity of equinatoxin II, a pore forming polypeptide from the sea anemoneActinia equina L.Biochim. Biophys. Acta 1119:5–10

    Google Scholar 

  54. Turk, T., Maček, P., Gubenšek, F. 1989. Chemical modification of equinatoxin II, a lethal and cytolytic toxin from the sea anemoneActinia equina.Toxicon 27:357–384

    Google Scholar 

  55. Varanda, A., Finkelstein, A. 1980. Ion and non electrolyte permeability properties of channels formed in planar lipid bilayer membranes by the cytolytic toxin from the sea anemone,Stoichactis helianthus.J. Membrane Biol. 55:203–211.

    Google Scholar 

  56. Weiner, R.N., Schneider, E., Haest, C.W.M., Deuticke, B., Benz, R., Frimmer, M. 1985. Properties of the leak permeability induced by a cytotoxic protein ofPseudomonas aeruginosa (PACT) in rat erythrocytes and black lipid membranes.Biochim. Biophys. Acta 820:173–182

    Google Scholar 

  57. Yoshimura, F., Zalman, L.S., Nikaido, H. 1983. Purification and properties ofPsuedomonas aeruginosa porin.J. Biol. Chem. 258:2308–2314

    Google Scholar 

  58. Zorec, R., Tester, M., Maček, P., Mason, W.T. 1990. Cytotoxicity of equinatoxin II from the sea anemoneActinia equina involves ion channel formation and an increase in intracellular calcium activity.J. Membrane Biol. 118:243–249

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belmonte, G., Pederzolli, C., Maček, P. et al. Pore formation by the sea anemone cytolysin equinatoxin II in red blood cells and model lipid membranes. J. Membrain Biol. 131, 11–22 (1993). https://doi.org/10.1007/BF02258530

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02258530

Key Words

Navigation