Skip to main content

Bacteriophage Isolation and Characterization: Phages of Escherichia coli

  • Protocol
  • First Online:
Horizontal Gene Transfer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2075))

Abstract

Here we introduce methods for the detection, enumeration, and isolation of bacteriophages from Escherichia coli. In bacteria, horizontal gene transfer may be mediated by virulent and temperate phages. Strict virulent phages, able to propagate in a suitable strain following the lytic pathway, can be isolated directly from different natural environments. In temperate phages, the lytic cycle must be activated, and phages are detected after their induction. In both cases, detection is based on the production of visible plaques in a confluent lawn of the host strain using a double agar layer method. Further purification and characterization are achieved by density gradients, electron microscopy studies, and genomic analysis. This straightforward methodology can be applied to the detection, enumeration, and isolation of bacteriophages from any bacterial species, using the appropriate host strain, media, and culture conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brussow H, Canchaya C, Hardt WD (2004) Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 68(3):560–602., table of contents. https://doi.org/10.1128/MMBR.68.3.560-602.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Canchaya C, Fournous G, Chibani-Chennoufi S, Dillmann ML, Brussow H (2003) Phage as agents of lateral gene transfer. Curr Opin Microbiol 6(4):417–424. https://doi.org/10.1016/S1369-5274(03)00086-9

    Article  CAS  PubMed  Google Scholar 

  3. Chen J, Novick RP (2009) Phage-mediated intergeneric transfer of toxin genes. Science 323(5910):139–141. https://doi.org/10.1126/science.1164783

    Article  CAS  PubMed  Google Scholar 

  4. Fineran PCPNS (2009) Transduction: host DNA transfer by bacteriophages. Elsevier Academic Press, San Diego

    Google Scholar 

  5. Griffiths AJF (2000) An introduction to genetic analysis, 7th edn. W.H. Freeman, New York

    Google Scholar 

  6. Sander M, Schmieger H (2001) Method for host-independent detection of generalized transducing bacteriophages in natural habitats. Appl Environ Microbiol 67(4):1490–1493. https://doi.org/10.1128/Aem.67.4.1490-1493.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Willi K, Sandmeier H, Kulik EM, Meyer J (1997) Transduction of antibiotic resistance markers among Actinobacillus actinomycetemcomitans strains by temperate bacteriophages Aa phi 23. Cell Mol Life Sci 53(11–12):904–910. https://doi.org/10.1007/s000180050109

    Article  CAS  PubMed  Google Scholar 

  8. Stanton TB (2007) Prophage-like gene transfer agents-novel mechanisms of gene exchange for Methanococcus, Desulfovibrio, Brachyspira, and Rhodobacter species. Anaerobe 13(2):43–49. https://doi.org/10.1016/j.anaerobe.2007.03.004

    Article  CAS  PubMed  Google Scholar 

  9. Hatfull GF (2008) Bacteriophage genomics. Curr Opin Microbiol 11(5):447–453. https://doi.org/10.1016/j.mib.2008.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Frigols B, Quiles-Puchalt N, Mir-Sanchis I, Donderis J, Elena SF, Buckling A, Novick RP, Marina A, Penades JR (2015) Virus satellites drive viral evolution and ecology. PLoS Genet 11(10). https://doi.org/10.1371/journal.pgen.1005609

    Article  PubMed  PubMed Central  Google Scholar 

  11. Novick RP, Christie GE, Penades JR (2010) The phage-related chromosomal islands of gram-positive bacteria. Nat Rev Microbiol 8(8):541–551. https://doi.org/10.1038/nrmicro2393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ogilvie LA, Bowler LD, Caplin J, Dedi C, Diston D, Cheek E, Taylor H, Ebdon JE, Jones BV (2013) Genome signature-based dissection of human gut metagenomes to extract subliminal viral sequences. Nat Commun 4. https://doi.org/10.1038/Ncomms3420

  13. Quiles-Puchalt N, Carpena N, Alonso JC, Novick RP, Marina A, Penades JR (2014) Staphylococcal pathogenicity island DNA packaging system involving cos-site packaging and phage-encoded HNH endonucleases. Proc Natl Acad Sci U S A 111(16):6016–6021. https://doi.org/10.1073/pnas.1320538111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Billard-Pomares T, Fouteau S, Jacquet ME, Roche D, Barbe V, Castellanos M, Bouet JY, Cruveiller S, Medigue C, Blanco J, Clermont O, Denamur E, Branger C (2014) Characterization of a P1-like bacteriophage carrying an SHV-2 extended-spectrum beta-lactamase from an Escherichia coli strain. Antimicrob Agents Chemother 58(11):6550–6557. https://doi.org/10.1128/AAC.03183-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kenzaka T, Tani K, Nasu M (2010) High-frequency phage-mediated gene transfer in freshwater environments determined at single-cell level. ISME J 4(5):648–659. https://doi.org/10.1038/ismej.2009.145

    Article  CAS  PubMed  Google Scholar 

  16. Rosario K, Breitbart M (2011) Exploring the viral world through metagenomics. Curr Opin Virol 1(4):289–297. https://doi.org/10.1016/j.coviro.2011.06.004

    Article  CAS  PubMed  Google Scholar 

  17. Lindell D, Jaffe JD, Johnson ZI, Church GM, Chisholm SW (2005) Photosynthesis genes in marine viruses yield proteins during host infection. Nature 438(7064):86–89. https://doi.org/10.1038/nature04111

    Article  CAS  PubMed  Google Scholar 

  18. Beumer A, Robinson JB (2005) A broad-host-range, generalized transducing phage (SN-T) acquires 16S rRNA genes from different genera of bacteria. Appl Environ Microbiol 71(12):8301–8304. https://doi.org/10.1128/AEM.71.12.8301-8304.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Breitbart M, Hewson I, Felts B, Mahaffy JM, Nulton J, Salamon P, Rohwer F (2003) Metagenomic analyses of an uncultured viral community from human feces. J Bacteriol 185(20):6220–6223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Asadulghani M, Ogura Y, Ooka T, Itoh T, Sawaguchi A, Iguchi A, Nakayama K, Hayashi T (2009) The defective prophage pool of Escherichia coli O157: prophage-prophage interactions potentiate horizontal transfer of virulence determinants. PLoS Pathog 5(5):e1000408. https://doi.org/10.1371/journal.ppat.1000408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Casjens S (2003) Prophages and bacterial genomics: what have we learned so far? Mol Microbiol 49(2):277–300

    Article  CAS  PubMed  Google Scholar 

  22. Fortier LC, Sekulovic O (2013) Importance of prophages to evolution and virulence of bacterial pathogens. Virulence 4(5):354–365. https://doi.org/10.4161/viru.24498

    Article  PubMed  PubMed Central  Google Scholar 

  23. Schuch R, Fischetti VA (2006) Detailed genomic analysis of the Wbeta and gamma phages infecting Bacillus anthracis: implications for evolution of environmental fitness and antibiotic resistance. J Bacteriol 188(8):3037–3051. https://doi.org/10.1128/JB.188.8.3037-3051.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Weinbauer MG (2004) Ecology of prokaryotic viruses. FEMS Microbiol Rev 28(2):127–181. https://doi.org/10.1016/j.femsre.2003.08.001

    Article  CAS  PubMed  Google Scholar 

  25. Paul JH (2008) Prophages in marine bacteria: dangerous molecular time bombs or the key to survival in the seas? ISME J 2(6):579–589. https://doi.org/10.1038/ismej.2008.35

    Article  CAS  PubMed  Google Scholar 

  26. Varani AM, Monteiro-Vitorello CB, Nakaya HI, Van Sluys MA (2013) The role of prophage in plant-pathogenic bacteria. Annu Rev Phytopathol 51:429–451. https://doi.org/10.1146/annurev-phyto-081211-173010

    Article  CAS  PubMed  Google Scholar 

  27. Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166(4):557–580

    Article  CAS  PubMed  Google Scholar 

  28. Woodcock DM, Crowther PJ, Doherty J, Jefferson S, Decruz E, Noyerweidner M, Smith SS, Michael MZ, Graham MW (1989) Quantitative-evaluation of Escherichia-Coli host strains for tolerance to cytosine methylation in plasmid and phage recombinants. Nucleic Acids Res 17(9):3469–3478. https://doi.org/10.1093/nar/17.9.3469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Grabow WOK, Coubrough P (1986) Practical direct plaque-assay for Coliphages in 100-ml samples of drinking-water. Appl Environ Microbiol 52(3):430–433

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Moce-Llivina L, Jofre J, Muniesa M (2003) Comparison of polyvinylidene fluoride and polyether sulfone membranes in filtering viral suspensions. J Virol Methods 109(1):99–101

    Article  CAS  PubMed  Google Scholar 

  31. Muniesa M, Lucena F, Jofre J (1999) Study of the potential relationship between the morphology of infectious somatic coliphages and their persistence in the environment. J Appl Microbiol 87(3):402–409. https://doi.org/10.1046/j.1365-2672.1999.00833.x

    Article  CAS  PubMed  Google Scholar 

  32. Los JM, Golec P, Wegrzyn G, Wegrzyn A, Los M (2008) Simple method for plating Escherichia coli bacteriophages forming very small plaques or no plaques under standard conditions. Appl Environ Microbiol 74(16):5113–5120. https://doi.org/10.1128/AEM.00306-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maite Muniesa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jofre, J., Muniesa, M. (2020). Bacteriophage Isolation and Characterization: Phages of Escherichia coli. In: de la Cruz, F. (eds) Horizontal Gene Transfer. Methods in Molecular Biology, vol 2075. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9877-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9877-7_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9876-0

  • Online ISBN: 978-1-4939-9877-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics