Skip to main content
Log in

Respiratory electron transport system activities in marine environments

  • Published:
Hydrobiological Bulletin Aims and scope Submit manuscript

Summary

One of the methods to measure decomposition is to measure the rate of respiration by the ETS method. The relative value and the shortcomings of this method, but also the advantages of it as sensitivity, easiness and quickness are stressed. Some examples of application of the method in ocean water, coastal water, marine sediment and salt marsh sediment are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • BAARS, M.A., J.J. ZIJLSTRA and S.B. TIJSSEN, 1979. Investigations in the euphotic zone of the tropical North Atlantic: programme and hydrography during the Nectar cruises. Neth. J. Sea Res., 13:40–57.

    Google Scholar 

  • BROBERG, A., 1980. Measurements of electron-transport-system activity in freshwater sediment. 8th Nordic symposium on sediments. In: F. Ö. Andersen, L. Kofoed and E. Lastein, Eds., Salten Skov Laboratory, Denmark, p. 172–193.

    Google Scholar 

  • DEVOL, A.H., T.T. PACKARD and O. HOLM-HANSEN, 1976. Respiratory electron transport activity and adenosine triphosphate in the oxygen minimum of the eastern tropical North Pacific. Deep-Sea Res., 23:963–973.

    Google Scholar 

  • GIESKES, W.W.C., G.W. KRAAY and M.A. BAARS, 1979. Current14C methods for measuring primary production: gross underestimates in oceanic waters. Neth. J. Sea Res., 13:58–78.

    Google Scholar 

  • JOENJE, W. and W.J. WOLFF, 1979. Functional aspects of salt marshes in the Wddden Sea area. In: W.J. Wolff, Ed. Flora and vegetation of the Wadden Sea, 3/160–3/171.

  • JONES, J.G., and B.M. SIMON, 1979. The measurement of electron transport system activity in freshwater benthic and planktonic samples. J. appl. Bacteriol. 46, 305–315.

    Google Scholar 

  • NIXON, Sc.W., 1980. Between coastal marshes and coastal waters. A review of twenty years of speculation and research on the role of salt marshes in estuarine productivity and water chemistry. In: P. Hamilton and K.B. MacDonald, Eds., Estuarine and wetland processes with emphasis on modelling, Plenum Press, p. 437–525.

  • OLANCZUK-NEYMAN, K.M. and J.H. VOSJAN, 1977. Measuring respiratory electron-transportsystem activity in marine sediment. Neth. J. Sea Res. 11, 1–13.

    Google Scholar 

  • PACKARD, T.T., 1969. The estimation of the oxygen utilization rate in seawater from the activity of the respiratory electron transport system in plankton. Thesis University of Washington, Seattle, 1–115.

  • PACKARD, T.T., 1971. The measurement of respiratory electron transport activity in marine phytoplankton. J. mar. Res. 29, 235–244.

    Google Scholar 

  • PACKARD, T.T., 1979. Respiration and respiratory electron transport activity in plankton from the Northwest African upwelling area. J. mar. Res. 37, 711–742.

    Google Scholar 

  • PACKARD, T.T., M.L. HEALY and F.A. RICHARDS, 1971. Vertical distribution of the activity of the respiratory electron transport system in marine plankton. Limnol. Oceanogr., 16, 60–70.

    Google Scholar 

  • PACKARD, T.T. and P.J. LEB. WILLIAMS, 1981. Rates of respiratory oxygen consumption and electron transport in surface seawater from the northwest Atlantic. Oceanologica Acta 4, 351–358.

    Google Scholar 

  • PAMATMAT, M.M., G. GRAF, W. BENGTSSON and C.S. NOVAK, 1981. Heat production, ATP concentration and electron transport activity of marine sediments. Mar. Ecol. Progr. Ser. 4, 135–153.

    Google Scholar 

  • PAMATMAT, M.M. and H.R. SKJOLDAL, 1979. Metabolic activity, adenosine phosphates and energy change of below ground biomass ofJuncus roemerianus Scheele andSpartina alterniflora Loisel. Estuar. Coast. Mar. Sci. 9, 79–90.

    Google Scholar 

  • POSTMA, H. and J.W. ROMMETS, 1979. Dissolved and particulate organic carbon in the North Equatorial current of the Atlantic Ocean. Neth. J. Sea Res. 13, 85–98.

    Google Scholar 

  • RAAPHORST, W. VAN, 1980. Een onderzoek naar de mineralisatieprocessen in het sediment van de kwelders langs de Dollard, gezien in het kader van de totale koolstofhuishouding van dit deel van het Eems-Dollard estuarium. R.I.N.-rapport, 1–131. (Unpubl. report).

  • SCHINDLER, J.E., D.J. WILLIAMS and A.P. ZIMMERMAN, 1976. Investigation of extracellular electron transport by humic acids. In: J.O. Nriagu, Ed., Environmental biogeochemistry. Ann Arbor Science Publishers Inc. Vol. I, p. 109–115.

  • SPITZER, D. and M.R. WERNAND, 1981. Optical measurements in the tropical North Atlantic. Oceanologica Acta 4, 69–75.

    Google Scholar 

  • TEAL, J.M., 1962. Energy flow in the salt marsh ecosystem of Georgia. Ecology 43, 614–624.

    Google Scholar 

  • TIJSSEN, S.B., 1979. Diurnal oxygen rhythm and primary production in the mixed layer of the Atlantic Ocean at 20°N. Neth. J. Sea Res. 13, 79–84.

    Google Scholar 

  • VOSJAN, J.H. Sauerstoffaufnahmegeschwindigkeit und ETS-Aktivität im Niederländischen Wattenmeer. III. Internationales Hydromikrobiologisches Symposium, Smolenice, 1980. (In press).

  • VOSJAN, J.H. and S.B. TIJSSEN, 1978. Respiratory electron transport system (ETS) activity variations in a tidal area during one tidal period. Oceanologica Acta 1, 181–186.

    Google Scholar 

  • WIESER, W. and M. ZECH, 1976. Dehydrogenases as tools in the study of marine sediments. Marine Biology 36, 113–122.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vosjan, J.H. Respiratory electron transport system activities in marine environments. Hydrobiological Bulletin 16, 61–68 (1982). https://doi.org/10.1007/BF02255413

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02255413

Keywords

Navigation