Skip to main content
Log in

The metabolism of exogenous L-Dopa in the brain: An immunohistochemical study of its conversion to dopamine in non-catecholaminergic cells of the rat brain

  • Full Papers
  • Published:
Journal of Neural Transmission - Parkinson's Disease and Dementia Section

Summary

The characterization and localization of non-catecholaminergic cells producing dopamine after L-Dopa load have been investigated in the normal rat brain by a direct immunohistochemical labelling of amines using specific antibodies. The detection of dopamine-containing non-catecholaminergic cells has been achieved in rats given a commonly used mixture of L-Dopa plus peripheral decarboxylase inhibitor, and compared to controls. Results indicate that serotoninergic neurons tend toward a switch of their metabolism into dopamine production after L-Dopa load in a dose-dependent manner. In addition small non-aminergic cells, identified as aromatic amino-acid decarboxylase-containing cells, were observed to produce dopamine after exogenous L-Dopa load. Possible implications of such results concerning the mode of action of L-Dopa in the brain are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Algeri S, Cerletti C (1974) Effects of L-Dopa administration on the serotoninergic system in rat brain: correlation between levels of L-Dopa accumulated in the brain and depletion of serotonin and tryptophan. J Pharmacol 27: 191–197

    Google Scholar 

  • Barret RE, Balel T (1971) Uptake of catecholamines into serotoninergic nerve cells as demonstrated by fluorescence biochemistry. Experientia 27: 663–664

    Article  PubMed  Google Scholar 

  • Brannan T, Bhardwaj A, Martinez-Tica J, Weinberger J, Yahr M (1990) Striatal L-Dopa metabolism studied in vivo in rats with nigrostriatal lesions. J Neural Transm [P-D-Sect] 2: 15–22

    Google Scholar 

  • Butcher LL, Engel J, Fuxe K (1972) Behavioral, biochemical and histochemical analysis of the central effects of monoamine precursors after peripheral decarboxylase inhibitor. Brain Res 41: 387–411

    Article  PubMed  Google Scholar 

  • Chagnaud JL, Mons N, Tuffet S, Grandier-Vazeilles X, Geffard M (1987) Monoclonal antibodies against glutaraldehyde-conjugated dopamine. J Neurochem 49: 487–494

    PubMed  Google Scholar 

  • Commisiong JW, Sedgwick EM (1979) Depletion of 5-HT by L-Dopa in spinal cord and brain stem of rat. Life Sci 25: 83–86

    Article  PubMed  Google Scholar 

  • Decavel C, Lescaudron L, Mons N, Calas A (1987) First visualization of dopaminergic neurons with a monoclonal antibody to dopamine: a light and electron microscopic study. J Histochem Cytochem 35: 1245–1251

    PubMed  Google Scholar 

  • Duvoisin RC, Nytilineou G (1978) Where is L-Dopa decarboxylated in the striatum after 6-hydroxy dopamine nigrotomy? Brain Res 152: 369–373

    Article  PubMed  Google Scholar 

  • Geffard M, Dulluc J, Heinrich-Rock AM (1985) Antisera against the indolealkylamines: tryptophan, 5-hydroxytryptophan, 5-hydroxytryptamine, 5-methoxytryptophan, 5-methoxytryptamine in rat brain tested by an ELISA method. J Neurochem 44: 1221–1228

    PubMed  Google Scholar 

  • Geffard M, Patel S, Dulluc J, Rock AM (1986) Specific detection of noradrenaline in the rat brain using antibodies. Brain Res 363: 395–400

    Article  PubMed  Google Scholar 

  • Hökfelt T, Fuxe K, Goldstein M (1973) Immunohistochemical localisation of aromatic L-amino-acid-decarboxylase (Dopa-decarboxylase) in central dopamine and 5-hydroxytryptamine nerve cell bodies of the rat. Brain Res 53: 175–180

    Article  PubMed  Google Scholar 

  • Hornykiewicz O (1971) The mechanisms of action of L-Dopa in Parkinson's disease. Life Sci 10: 549–557

    Article  Google Scholar 

  • Jaeger CB, Ruggiero DA, Albert TR, Joh TH, Reis DJ (1984a) Immunocytochemical localisation of aromatic-L-aminoacid decarboxylase. In: Björklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy, vol 2. Classical transmitters in the CNS, part I. Elsevier, Amsterdam, pp 387–408

    Google Scholar 

  • Jaeger CB, Ruggiero DA, Albert TR, Park TH, Joh TH, Reis DJ (1984b) Aromatic-L-aminoacid decarboxylase in the rat brain, immunocytochemical localisation in neurons of the brain stem. Neuroscience 11: 691–713

    Article  PubMed  Google Scholar 

  • Jaeger CB, Teitelman G, Joh TH, Albert TR, Park TH, Reis DJ (1983) Some neurons of the rat central nervous system contain aromatic-L-aminoacid decarboxylase but not monoamines. Science 219: 1233–1235

    PubMed  Google Scholar 

  • Kitahama K, Mons N, Okamura H, Jouvet M, Geffard M (1988) Endogenous L-Dopa, its immunoreactivity in neurons of the midbrain and its projection fields in the cat. Neurosci Lett 95: 47–52

    Article  PubMed  Google Scholar 

  • Klawans HL, Goetz C, Bergen D (1975) Levodopa-induced myoclonus. Arch Neurol 32: 331–334

    Google Scholar 

  • Lidbrink P, Jonsson G, Fuxe K (1974) Selective reserpine resistant accumulation of catecholamine in central dopamine neurons after L-Dopa administration. Brain Res 67: 439–456

    Article  PubMed  Google Scholar 

  • Lovenberg W, Weissbach H, Udenfriend S (1962) Aromatic L-amino-acid-decarboxylase. J Biol Chem 237: 89–93

    PubMed  Google Scholar 

  • Maj J, Pawlowski L, Sarnek J (1974) The role of brain 5-hydroxytryptamine in the central action of L-Dopa. Adv Biochem Psychopharmacol 10: 253–256

    PubMed  Google Scholar 

  • Melamed E, Hefti F, Bitton V, Globus M (1984) Suppression of L-Dopa induced circling in rats with nigral lesions by blockade of central dopa-decarboxylase: implications for mechanism of action of L-Dopa in parkinsonism. Neurology 34: 1566–1570

    PubMed  Google Scholar 

  • Melamed E, Hefti F, Liebman J, Schlosberg AJ, Wurtman RJ (1980a) Serotoninergic neurons are not involved in action of L-Dopa in Parkinson's disease. Nature 283: 772–774

    Article  PubMed  Google Scholar 

  • Melamed E, Hefti F, Pettibone DJ (1981) Aromatic L-amino acid decarboxylase in rat corpus striatum: implications for action of L-Dopa in parkinsonism. Neurology 31: 651–655

    PubMed  Google Scholar 

  • Melamed E, Hefti F, Wurtman J (1980b) Non aminergic striatal neurons convert exogenous L-Dopa to dopamine in parkinsonism. Ann Neurol 8: 558–563

    Article  PubMed  Google Scholar 

  • Melamed E, Hefti F, Wurtman J (1980c) Decarboxylation of exogenous L-Dopa in rat striatum after lesions of the dopaminergic nigrostriatal neuron: the role of striatal capillaries. Brain Res 198: 244–248

    Article  PubMed  Google Scholar 

  • Mons N, Danel N, Geffard M (1988) Visualization of L-dihydroxyphenylalanine in the rat brain by using specific antibodies. Brain Res 451: 403–407

    Article  PubMed  Google Scholar 

  • Mons N, Geffard M (1987) Specific antisera against the catecholamines: L-3,4-dihydroxyphenylalanine, dopamine, noradrenaline and octopamine tested by an enzyme-linked immunosorbent assay. J Neurochem 48: 1826–1833

    PubMed  Google Scholar 

  • Mons N, Tison F, Geffard M (1989) Identification of L-Dopa-dopamine and L-Dopa cell bodies in the rat mesencephalic dopaminergic cell systems. Synapse 4: 95–105

    Article  Google Scholar 

  • Ng KY, Chase TN, Colburn RW, Kopin IJ (1970) L-Dopa induced release of cerebral monoamines. Science 170: 76:x177

    Google Scholar 

  • Ng KY, Chase TN, Colburn RW, Kopin IJ (1972a) L-Dopa in parkinsonism. A possible mechanism of action. Neurology 22: 688–696

    PubMed  Google Scholar 

  • Ng KY, Colburn RW, Kopin IJ (1972b) Effects of L-Dopa on accumulation and efflux of monoamines in particles of rat brain homogenates. J Pharmacol Exp Ther 183: 316–325

    PubMed  Google Scholar 

  • Schlosberg AJ, Harvey JA (1979) Effects of L-Dopa and L-5-hydroxytryptophan on locomotor activity of the rat after selective or combined destruction of central catecholamine and serotonin neurons. J Pharmacol Exp Ther 211: 296–304

    PubMed  Google Scholar 

  • Snyder GL, Zigmond MJ (1990) The effects of L-Dopa on in vitro dopamine release from striatum. Brain Res 508: 181–187

    Article  PubMed  Google Scholar 

  • Tashiro Y, Kaneko T, Sugimoto T, Nagatsu I, Kikuchi H, Mizuno N (1989) Striatal neurons with aromatic L-aminoacid decarboxylase-like immunoreactivity in the rat. Neurosci Lett 10: 29–34

    Article  Google Scholar 

  • Tison F, Mons N, Rouet-Karama S, Geffard M, Henry P (1989) Endogenous L-Dopa in the rat dorso-vagal complex: an immunocytochemical study by light and electron microscopy. Brain Res 497: 260–270

    Article  PubMed  Google Scholar 

  • Tison F, Geffard M, Henry P (1990a) Tryptamine is found closely associated to the serotonergic pathways when using an immunohistochemical method of detection in the rat central nervous system. Biogenic Amines 7: 235–248

    Google Scholar 

  • Tison F, Mons N, Geffard M, Henry P (1990b) Immunohistochemistry of endogenous L-Dopa in the rat posterior hypothalamus. Histochemistry 93: 655–660

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tison, F., Mons, N., Geffard, M. et al. The metabolism of exogenous L-Dopa in the brain: An immunohistochemical study of its conversion to dopamine in non-catecholaminergic cells of the rat brain. J Neural Transm Gen Sect 3, 27–39 (1991). https://doi.org/10.1007/BF02251134

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02251134

Keywords

Navigation