Skip to main content
Log in

Discretization of elliptic differential equations on curvilinear bounded domains with sparse grids

Diskretisierung elliptischer Differentialgleichungen auf krummlinig berandeten Gebieten mit dünnen Gittern

  • Published:
Computing Aims and scope Submit manuscript

Abstract

Elliptic differential equations can be discretized with bilinear finite elements. Using sparse grids instead of full grids, the dimension of the finite element space for the 2D problem reduces fromO(N 2) toO (N logN) while the approximation properties are nearly the same for smooth functions. A method is presented which discretizes elliptic differential equations on curvilinear bounded domains with adaptive sparse grids. The grid is generated by a transformation of the domain. This method has the same behaviour of convergence like the sparse grid discretization on the unit square.

Zusammenfassung

Elliptische Differentialgleichungen werden häufig mittels bilinearer Finite-Elemente diskretisiert. Verwendet man hierfür dünne Gitter anstelle voller Gitter, so reduziert sich die Dimension des Finite-Element-Raumes eines 2D-Problems vonO(N 2) aufO(N logN). Die Approximationseigenschaften bleiben jedoch nahezu erhalten. Es wird eine Methode zur Diskretisierung elliptischer Differentialgleichungen auf krummlinig berandeten Gebieten mittels adaptiver dünner Gitter vorgestellt. Das Gitter wird durch eine Transformation des Gebietes erzeugt. Das Konvergenzverhalten dieses Verfahrens kommt dem der Dünngitter-Diskretisierung auf dem Einheitsquadrat gleich.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balder, R.: Adaptive Verfahren für elliptische und parabolische Verfahren auf dünnen Gittern. Dissertation, Technische Universität München, 1994.

  2. Balder, R., Zenger, C.: The solution of multidimensional real Helmholtz equations on sparse grids. Appears in SIAM J. Sci. Comp.

  3. Bungartz, H.-J.: An adaptive poisson solver using hierarchical bases and sparse grids. In: Proceedings of the IMACS International Symposium on Iterative Methods in Linear Algebra, Brüssel, April 1991 (de Groen, P., Beauwens, R., eds.), Amsterdam: Elsevier 1992.

    Google Scholar 

  4. Eisemann, P. R.: A multi-surface method of coordinate generation. J. Comput. Phys.33, 118–150 (1979).

    Article  Google Scholar 

  5. Fletcher, C. A. J.: Computational techniques for fluid dynamics, 2nd ed. Heidelberg New York Berlin Tokyo: Springer 1991.

    Google Scholar 

  6. Gordon, W. J., Hall, C. A.: Construction of curvilinear coordinate systems and application to mesh generation. Int. J. Numer. Meth. Eng.7, 461–477 (1973).

    Article  Google Scholar 

  7. Gordon, W. J., Thiel, L. C.: Transfinite mapping and their application to grid generation. In: Numerical grid generation, (Thompson, J. F., ed.), pp. 171–192. Amsterdam: North-Holland 1982.

    Google Scholar 

  8. Griebel, M., Schneider, M., Zenger, C.: A combination technique for the solution of sparse grid problems. In: Proceedings of the IMACS International Symposium on Iterative Methods in Linear Algebra, Brüssel, April 1991 (de Groen, P., Beauwens, R., eds.). Amsterdam: Elsevier 1992.

    Google Scholar 

  9. Griebel, M., Thurner, V.: Solving CFD-problems efficiently by the combination method. CFD-News (1993).

  10. Pflaum, C.: Anwendung von Mehrgitterverfahren auf dünnen Gittern. Technische Universität München, Diplomarbeit, 1992.

  11. Pflaum, C.: Convergence of the combination technique for the finite element solution of Poisson's equation. SFB-Report 342/14/93 A, Technische Universität München, 1993.

  12. Pflaum, C.: A multi-level-algorithm for the finite-element-solution of general second order elliptic differential equations on adaptive sparse grids. SFB-Report 342/12/94 A, Technische Universität München, 1994.

  13. Smith, R. E.: Algebraic grid generation. In: Numerical grid generation (Thompson, J. F., ed.), pp. 137–170. Amsterdam: North-Holland 1982.

    Google Scholar 

  14. Thompson, J. F.: Numerical grid generation. Amsterdam: North-Holland 1982.

    Google Scholar 

  15. Thompson, J. F., Warsi, Z. U. A., Mastin, C. W.: Numerical grid generation foundations and applications. Amsterdam: North-Holland 1985.

    Google Scholar 

  16. Wloka, J.: Partielle Differentialgleichungen. Stuttgart: Teubner 1982.

    Google Scholar 

  17. Zenger, C.: Sparse grids. In: Parallel Algorithms for Partial Differential Equations: Proceedings of the Sixth GAMM-Seminar, Kiel, January 1990 (Hackbusch, W., ed.), Braunschweig: Vieweg 1991 (Notes on Numerical Fluid Mechanics, Vol. 31).

    Google Scholar 

  18. Zimmer, S.: Lösung der Stokes-Gleichungen durch ein adaptives Verfahren mit hierarchischen Basisfunktionen. Technische Universität München, Diplomarbeit, 1991.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dornseifer, T., Pflaum, C. Discretization of elliptic differential equations on curvilinear bounded domains with sparse grids. Computing 56, 197–213 (1996). https://doi.org/10.1007/BF02238512

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02238512

AMS Subject Classifications

Key words

Navigation