Skip to main content
Log in

Intestinal mucosal morphology during water and electrolyte absorption

A light and electron microscopic study

  • Published:
The American Journal of Digestive Diseases Aims and scope Submit manuscript

Abstract

In order to study morphologic events taking place during intestinal absorption of water and electrolytes, light and electron microscopic studies were performed in an in vivo preparation of rat ileum fixed during well-defined conditions of solute absorption. Water absorption was significantly greater (0.19±0.012 ml/cm/hr) in animals perfused intraluminally with isotonic saline than in mannitolperfused ones (0.04±0.015 ml/cm/hr). Structural alterations during water absorption consisted of dilatation of epithelial cell intercellular spaces, lymphatics, and capillaries. The changes were quantitated and shown to be significantly different when saline perfused animals were compared to the mannitol-perfused group. These morphologic observations and the histochemical localization of ATPase to the apical and lateral cell membranes satisfies some of the postulates of a serial membrane theory. The intercellular spaces appear to represent the second compartment, and the capillaries and lymphatics appear to represent the third compartment of the model. The exact role of the intestinal epithelial cell in fluid absorption and the site of Membrane A has not been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fordtran, J. A., andDietschy, J. M. Water and electrolyte movement in the intestine.Gastroenterology 50:263, 1966.

    PubMed  Google Scholar 

  2. Schultz, S. G., andCurran, P. F. Intestinal absorption of sodium chloride and water. InHandbook of Physiology-Alimentary Canal, Intestinal Absorption (Sect. 6, Vol. 3, Ch 66), American Physiologic Society, Washington, DC, 1968, pp 1245–1275.

    Google Scholar 

  3. Kaye, G. I., Wheeler, H. O., Whitlock, R. T., andLane, N. Fluid transport in the rabbit gallbladder.J Cell Biol 30:237, 1966.

    PubMed  Google Scholar 

  4. Tormey, J. M., andDiamond, J. M. The ultrastructural route of fluid transport in rabbit gallbladder.J Gen Physiol 50:2031, 1967.

    PubMed  Google Scholar 

  5. Curran, P. F., andMacIntosh, J. R. A model system for biological water transport.Nature 193:347, 1962.

    PubMed  Google Scholar 

  6. Forssmann, W. G., Siergrist, G., Orei, L., Girardier, L., Picef, R., andRoullier, C. Fixation par perfusion pour la microscopic elctronique.J Microscopie 6:279, 1967.

    Google Scholar 

  7. Karlsson, U., andSchultz, R. L. Fixation of central nervous system for electron microscopy: I. Preservation with aldehyde perfusion versus direct perfusion with osmium tetroxide.J Ultrastr Res 12:160, 1965.

    Google Scholar 

  8. Maunsbach, A. B. The influence of differnt fixatives and fixation methods on the ultrastructure of rat kidney proximal tubule cells.J Ultrastr Res 15:242, 1966.

    Google Scholar 

  9. Griffith, L. D., Bulger, R. E., andTrump, B. F. The ultrastructure of the functioning kidney.Lab Invest 16:220, 1967.

    PubMed  Google Scholar 

  10. Luft, J. H. Improvements in epoxy resin embedding methods.J Biophys Biochem Cytol 9:409, 1961.

    PubMed  Google Scholar 

  11. Richardson, K. C., Jarrett, L., andFincke, E. H. Embedding in epoxy resins for ultrathin sectioning in electron microscopy.Stain Tech 35:313, 1960.

    PubMed  Google Scholar 

  12. Frasca, J.M., andParks, V. R. A routine technique for double staining ultrathin sections using uranyl and lead salts.J Cell Biol 25:157, 1965.

    PubMed  Google Scholar 

  13. Reynolds, E. S. The use of lead citrate at high pH as an electronopaque stain in electron microscopy.J Cell Biol 17:208, 1963.

    PubMed  Google Scholar 

  14. Curran, P. F., andSolomon, A. K. Ion and water fluxes in the ileum of rats.J Gen Physiol 41:143, 1957.

    PubMed  Google Scholar 

  15. Chalkley, H. W. Method for quantitative morphologic analysis of tissues.J Nat Cancer Inst 4:47, 1943.

    Google Scholar 

  16. Wachstein, M., andMeisel, E. Histochemistry of hepatic phosphatases of a physiologic pH.Amer J Clin Path 27:13, 1957.

    Google Scholar 

  17. Farquhar, M. G., andPalade, G. E. Cell junctions in amphibian skin.J Cell Biol 26:263, 1965.

    PubMed  Google Scholar 

  18. Palay, S. L., andKarlin, L. S. An electron microscopic study of intestinal villus: I. The fasting animal.J Biophys Biochem Cytol 5:363, 1959.

    PubMed  Google Scholar 

  19. Trier, J. S., andRubin, C. E. Electron microscopy of the small intestine; a review.Gastroenterology 49:574, 1965.

    PubMed  Google Scholar 

  20. Dobbins, W. O., III, Rollins, E. L., andTomasini, J. T. Lymphatic capillary permeability of the intestinal mucosa using peroxidase as a tracer.J Cell Biol 39:35A, 1968.

  21. Tormey, J. Significance of histochemical demonstration of ATPase in epithelia noted for active transport.Nature 210:820, 1966.

    PubMed  Google Scholar 

  22. Farquhar, M. G., andPalade, G. E. Adenosine triphosphatase localization in amphibian epidermis.J Cell Biol 30:359, 1966.

    PubMed  Google Scholar 

  23. Berg, G. G., andChapman, B. The Na+ and K+ activated ATPase of intestinal epithelium.J Cell Comp Physiol 65:361, 1965.

    Google Scholar 

  24. Rosenberg, I. H., andRosenberg, L. E. Location and characteristics of ATPase in guinea pig intestinal epithelium.Comp Biochem Physiol 24:975, 1968.

    PubMed  Google Scholar 

  25. Bresler, E. H. On criteria for active transport.J Theoret Biol 16:135, 1967.

    Google Scholar 

  26. Lee, J. S. Iso-osmotic absorption of fluid from rat jejunumin vitro.Gastroenterology 54:366, 1968.

    PubMed  Google Scholar 

  27. Ogilvie, J. T., MacIntosh, J. R., andCurran, P. F. Volume flow in a series membrane system.Biochim Biophys Acta 66:441, 1963.

    PubMed  Google Scholar 

  28. Patlak, C. S., Goldstein, D. A., andHoffman, J. F. The flow of solute and solvent across a two membrane system.J Theoret Biol 5:426, 1963.

    Google Scholar 

  29. Farquhar, M. G., andPalade, G. E. Junctional complexes of various epithelia.J Cell Biol 17:375, 1963.

    PubMed  Google Scholar 

  30. Cardell, R. R., Badenhausen, S., andPorter, K. R. Intestinal triglyceride absorption in the rat.J Cell Biol 34:123, 1967.

    PubMed  Google Scholar 

  31. Schultz, S. G., andZalusky, R. Ion transport in isolated rabbit ileum.J Gen Physiol 47:567, 1963.

    Google Scholar 

  32. Schmidt-Nielsen, B., andDavies, L. E. Fluid transport and tubular intercellular spaces in reptillian kidneys.Science 159:1105, 1968.

    PubMed  Google Scholar 

  33. Diamond, J. M., andBossert, W. H. Standing gradient osmotic flow.J Gen Physiol 50:2061, 1967.

    PubMed  Google Scholar 

  34. Landis, E. M., andPappenheimer, J. R. Exchange of substances through the capillary wall. InHandbook of Physiology, Circulation. (Sect. 2, Vol. 2, Ch. 29), American Physiologic Society, Washington, DC, 1963, pp 961–1034.

    Google Scholar 

  35. Schultz, S. G., Curran, P. F., Chez, R. A., andFuisz, R. E. Alanine and sodium fluxes across the mucosal border of rabbit ileum.J Gen Physiol 50:1241, 1967.

    PubMed  Google Scholar 

  36. Diamond, J. M. A rapid method for determining voltage-concentration relations across membranes.J Physiol 183:83, 1966.

    PubMed  Google Scholar 

  37. Noyan, A. Water absorption from the intestine via portal and lymphatic pathway in rats.Proc Soc Exp Biol 117:317, 1964.

    Google Scholar 

  38. Lee, J. S. Flow and pressures in lymphatic and blood vessels of intestine in water absorption.Amer J Physiol 200:979, 1961.

    PubMed  Google Scholar 

  39. Lee, J. S. Lymphatic and venous transport of water from rat jejunum.Gastroenterology 54:559, 1968.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by Grant AM 12107 and AM 13725 from NIAMD, USPHS. The work of Doctor Tomasini was supported by NIH Training Grant TI-AM-5093-12 from NIAMD, USPHS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomasini, J.T., Dobbins, W.O. Intestinal mucosal morphology during water and electrolyte absorption. Digest Dis Sci 15, 226–238 (1970). https://doi.org/10.1007/BF02233453

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02233453

Keywords

Navigation